
PQStat Software
Statistical Compution Software

User Manual - PQStat

Barbara Więckowska

COPYRIGHT ©2010‐2023 PQSTAT SOFTWARE .................All rights reserved

To the version 1.8.6
P7909040423

www.pqstat.pl

http://www.pqstat.pl


Spis treści
1 SYSTEM REQUIREMENTS 2

2 INSTALLATION 2

3 SETTINGS 3

4 PROGRAM OPERATION 6
4.1 WORKING WITH DATASHEETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.1.1 ADDING, REMOVING AND EXPORTING DATASHEETS . . . . . . . . . . . . . . . . . . . . . 8
4.1.2 INPUTTING DATA INTO A DATASHEET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1.3 DATASHEET WINDOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.4 VARIABLE PROPERTIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1.5 EDITING DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.6 SORTING DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.7 CONVERTING RAW DATA INTO A CONTINGENCY TABLE . . . . . . . . . . . . . . . . . . . 15
4.1.8 CONVERTING A CONTINGENCY TABLE INTO RAW DATA . . . . . . . . . . . . . . . . . . . 16
4.1.9 FORMULAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.10 DATA GENERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.11 MISSING DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.12 TRANSFORMATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.13 DIRECT AND INDIRECT STANDARDIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.14 SAMPLING SIMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.15 SIMILARITY MATRIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 WORKING WITH RESULTS SHEETS (REPORTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 MENU AND LANGUAGE SETTINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 LANGUAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.2 MENU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 ORGANIZATION OF WORK WITH THE PROGRAM 43
5.1 FORM OF DATA ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 DATASHEET WORKSPACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.1 Organizing variables into sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.2 Case activation/deactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.3 Selecting an area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.4 Saved Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.5 Data filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 MULTIPLE ANALYSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4 ORGANIZING REPORTS INTO SETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.5 INFORMATION RETURNED TO THE REPORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.6 IDENTIFICATION OF STATISTICALLY SIGNIFICANT RESULTS . . . . . . . . . . . . . . . . . . . . . . 52

6 PLOTS 53
6.1 PLOT GALLERY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.1 Column plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.1.2 Estimator error plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.1.3 Box‐whiskers plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.1.4 Scatter plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.1.5 Line plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2 LOCAL LINEAR SMOOTHING TECHNIQUES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2.1 LOWESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2.2 Kernel smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3 KERNEL ESTIMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3.1 One‐dimensional kernel estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4 BLAND‐ALTMAN PLOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.5 Correlation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



SPIS TREŚCI

7 TEST POWER AND SAMPLE SIZE 82
7.1 Sample size determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.2 Power and sample size for test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.2.1 Single‐sample t‐test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.2.2 T‐test for dependent groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2.3 T‐test for independent groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.2.4 Chi‐square test for single sample variance . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.2.5 Chi‐square test of two variances Fisher‐Snedecor . . . . . . . . . . . . . . . . . . . . . . 92
7.2.6 Chi‐square test (goodness of fit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2.7 Chi‐square test (RxC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8 Two independent proportions, chi‐square (2x2) 95
8.0.1 One‐way ANOVA for independent groups . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.0.2 Test for one proportion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

9 DESCRIPTIVE ANALYSES 98

10 DESCRIPTIVE ANALYSES 98
10.1 MEASURING SCALES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
10.2 TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

10.2.1 FREQUENCY TABLES AND EMPIRICAL DISTRIBUTION OF THE DATA . . . . . . . . . . . . . 100
10.2.2 TABLE REPORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
10.2.3 ANALYSES FOR CONTINGENCY TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

10.3 DESCRIPTIVE STATISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
10.3.1 LOCATION MEASURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
10.3.2 MEASURES OF CENTRAL TENDENCY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
10.3.3 OTHER MEASURES OF LOCATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
10.3.4 MEASURES OF VARIABILITY (DISPERSION) . . . . . . . . . . . . . . . . . . . . . . . . . . 115
10.3.5 ANOTHER DISTRIBUTION CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . 116

10.4 DESCRIPTIVE SUMMARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

11 PROBABILITY DISTRIBUTIONS 122
11.1 CONTINUOUS PROBABILITY DISTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
11.2 PROBABILITY DISTRIBUTION CALCULATOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

12 HYPOTHESIS TESTING 130
12.0.1 POINT AND INTERVAL ESTIMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
12.0.2 VERIFICATION OF STATISTICAL HYPOTHESES . . . . . . . . . . . . . . . . . . . . . . . . . 130

13 NORMALITY DISTRIBUTION TESTS 133
13.0.1 One‐dimensional normality tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
13.0.2 Multivariate normality tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

14 COMPARISON ‐ 1 GROUP 146
14.1 PARAMETRIC TESTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

14.1.1 The t‐test for a single sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
14.1.2 The Single‐Sample Chi‐square Test for a Population Variance . . . . . . . . . . . . . . . . 150

14.2 NON‐PARAMETRIC TESTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
14.2.1 The Wilcoxon test (signed‐ranks) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
14.2.2 The Chi‐square goodness‐of‐fit test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
14.2.3 Tests for one proportion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Copyright ©2010‐2023 PQStat Software – All rights reserved 2



SPIS TREŚCI

15 COMPARISON ‐ TWO GROUPS 163
15.1 PARAMETRIC TESTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

15.1.1 The Fisher‐Snedecor test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
15.1.2 The t‐test for independent groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
15.1.3 The t‐test with the Cochran‐Cox adjustment . . . . . . . . . . . . . . . . . . . . . . . . . 166
15.1.4 The t‐test for dependent groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

15.2 NON‐PARAMETRIC TESTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
15.2.1 The Mann‐Whitney U test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
15.2.2 The Wilcoxon test (matched‐pairs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
15.2.3 The Chi‐square tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
15.2.4 The Chi‐square test for large tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
15.2.5 The Fisher’s test for large tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
15.2.6 The Chi‐square test for small tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
15.2.7 The Chi‐square test corrections for small tables . . . . . . . . . . . . . . . . . . . . . . . 191
15.2.8 The Chi‐square test for trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
15.2.9 The Relative Risk and the Odds Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
15.2.10 The Z test for 2 independent proportions . . . . . . . . . . . . . . . . . . . . . . . . . . 199
15.2.11 The McNemar test, the Bowker test of internal symmetry . . . . . . . . . . . . . . . . . 203
15.2.12 The Z Test for two dependent proportions . . . . . . . . . . . . . . . . . . . . . . . . . . 209

16 COMPARISON ‐ MORE THAN TWO GROUPS 213
16.1 PARAMETRIC TESTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

16.1.1 The ANOVA for independent groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
16.1.2 The contrasts and the POST‐HOC tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
16.1.3 The ANOVA for independent groups with F ∗ and F ′′ corrections . . . . . . . . . . . . . . 222
16.1.4 The Brown‐Forsythe test and the Levene test . . . . . . . . . . . . . . . . . . . . . . . . 228
16.1.5 The ANOVA for dependent groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
16.1.6 Mauchly’s sphericity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
16.1.7 The ANOVA for dependent groups with Epsilon correction and MANOVA . . . . . . . . . 234

16.2 NON‐PARAMETRIC TESTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
16.2.1 The Kruskal‐Wallis ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
16.2.2 The Jonckheere‐Terpstra test for trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
16.2.3 The Conover ranks test of variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
16.2.4 The Friedman ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
16.2.5 The Page test for trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
16.2.6 The Durbin’s ANOVA (missing data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
16.2.7 The Skillings‐Mack ANOVA (missing data) . . . . . . . . . . . . . . . . . . . . . . . . . . 268
16.2.8 The Chi‐square test for multidimensional contingency tables . . . . . . . . . . . . . . . . 271
16.2.9 The Q‐Cochran ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

17 Multicomparisons 278

18 UNIVARIATE MANOVA 282

19 ANALYSIS FOR STRATAS 288
19.1 The Mantel‐Haenszel method for several tables . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

19.1.1 The Mantel‐Haenszel Odds Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
19.1.2 The Mantel‐Haenszel Relative Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

20 CORRELATION 295
20.1 PARAMETRIC TESTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

20.1.1 THE LINEAR CORRELATION COEFFICIENTS . . . . . . . . . . . . . . . . . . . . . . . . . . 296
20.1.2 The Pearson correlation coefficient significance . . . . . . . . . . . . . . . . . . . . . . . 297
20.1.3 The slope coefficient significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
20.1.4 Comparison of correlation coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
20.1.5 Comparison of the slope of regression lines . . . . . . . . . . . . . . . . . . . . . . . . . 302

20.2 NON‐PARAMETRIC TESTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

Copyright ©2010‐2023 PQStat Software – All rights reserved 3



SPIS TREŚCI

20.2.1 THE MONOTONIC CORRELATION COEFFICIENTS . . . . . . . . . . . . . . . . . . . . . . . 304
20.2.2 Significance Test for Spearman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
20.2.3 Significance Test for Kendall’s tau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
20.2.4 CONTINGENCY TABLES COEFFICIENTS AND THEIR STATISTICAL SIGNIFICANCE . . . . . . . 309

21 AGREEMENT ANALYSIS 315
21.1 PARAMETRIC TESTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

21.1.1 The Intraclass Correlation Coefficient and a test to examine its significance . . . . . . . . 316
21.2 NON‐PARAMETRIC TESTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

21.2.1 The Kendall’s concordance coefficient and a test to examine its significance . . . . . . . . 321
21.2.2 The Cohen’s Kappa coefficient and the test examining its significance . . . . . . . . . . . 324
21.2.3 The Kappa Fleiss coefficient and a test to examine its significance . . . . . . . . . . . . . 330

22 DIAGNOSTIC TESTS 335
22.1 EVALUATION OF DIAGNOSTIC TEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
22.2 The ROC CURVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

22.2.1 Selection of optimum cut‐off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
22.2.2 ROC curves comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

23 MULTIDIMENSIONAL MODELS 354

24 MATCHING GROUPS 354
24.1 PREPARATION OF VARIABLES FOR ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

24.1.1 Variables coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
24.1.2 Interctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

24.2 MULTIPLE LINEAR REGRESSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
24.2.1 Model verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
24.2.2 More information about the variables in the model . . . . . . . . . . . . . . . . . . . . . 373
24.2.3 Analysis of model residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
24.2.4 Example for multiple regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
24.2.5 Model‐based prediction and test set validation . . . . . . . . . . . . . . . . . . . . . . . 383

24.3 COMPARISON OF MULTIPLE LINEAR REGRESSION MODELS . . . . . . . . . . . . . . . . . . . . . 387
24.4 LOGISTIC REGRESSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

24.4.1 The Odds Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
24.4.2 Model verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
24.4.3 Examples for logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
24.4.4 Model‐based prediction and test set validation . . . . . . . . . . . . . . . . . . . . . . . 413

24.5 COMPARISON OF LOGISTIC REGRESSION MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . 414
24.6 FACTORIAL ANOVA ‐ GLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
24.7 ANCOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

25 Mediation effect 444

26 DIMENSION REDUCTION AND GROUPING 446
26.1 PRINCIPAL COMPONENT ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

26.1.1 Interpretation of coefficients related to the analysis . . . . . . . . . . . . . . . . . . . . . 448
26.1.2 Graphical interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
26.1.3 The criteria of dimension reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
26.1.4 Defining principal components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
26.1.5 The advisability of using the Principal Component Analysis . . . . . . . . . . . . . . . . . 452

26.2 CLUSTER ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
26.2.1 Hierarchical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
26.2.2 K‐means method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

Copyright ©2010‐2023 PQStat Software – All rights reserved 4



SPIS TREŚCI

27 SURVIVAL ANALYSIS 468
27.1 LIFE TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
27.2 KAPLAN‐MEIER CURVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
27.3 COMPARISON OF SURVIVAL CURVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

27.3.1 Differences among the survival curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
27.3.2 Survival curves trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
27.3.3 Survival curves for the stratas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

27.4 COX PROPORTIONAL HAZARD REGRESSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
27.4.1 Hazard Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
27.4.2 Model verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
27.4.3 Analysis of model residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

27.5 COMPARISON OF COX PH REGRESSION MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . 490

28 META‐ANALYSIS 498
28.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
28.2 Summary effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
28.3 Weights of individual studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
28.4 Heterogeneity testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
28.5 Sensitivity testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
28.6 Asymmetry testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
28.7 Cumulative meta‐analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
28.8 Group comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
28.9 Meta‐regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

29 RELIABILITY ANALYSIS 527

30 Test summaries 533

31 THE WIZARD 537

32 OTHER NOTES 538
32.1 FILES FORMAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538

Copyright ©2010‐2023 PQStat Software – All rights reserved 5



2 INSTALLATION

1 SYSTEM REQUIREMENTS

To use PQStat, your computer must meet the following minimum requirements:

‐ Processor: Intel Pentium II 500MHz

‐ RAM: 256MB

‐ Graphics Card: SVGA 800x600

‐ Storage: 0.2GB

‐ If using CD version: CD‐ROM

‐ Other : mouse and keyboard

‐ OS: Windows® 2000/XP/Vista/7/8

2 INSTALLATION

To start the installaton process, run the applicaton installer ‐ PQStat-setup_x86-FULL (for the 64-bit
version run PQStat-setup_x64-FULL.exe).
After doing so, a setup dialog boxwill appear. Press “Next” to continue. Further installation requires you
to accept the Terms of Service. If you accept, select: ”I accept the terms of service” and press “Next”.
Otherwise, select ”I do not accept the terms of service” and press : “Cancel” to abort the installation.

The following window will give you an option to change the default installation directory. Information
about available disc space will also be displayed. Choosing the default installation directory is recom‐
mended.

Pressing “Next” will give you a choice of either a full installation or a version not including exemplary
data sets. The data sets are used in the user guide.

In the next section, you will be given a chance to change the shortcut name, which will be created in
the Windows Start Menu.

After pressing “Next”, you will have an option to create a Desktop Shoutcut or add a shoutcut to the
Quick Lunch toolbar. Press “Next” to continue.

The following window it the last one before the installation process begins. It displays a summary of
installation options chosen so far. Pressing ”Instal” will start the installation process.
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3 SETTINGS

General settings regarding program options, data sheets, carrying out analysis, returned reports and
use of external tools can be changed by selecting menu Edit→Settings.

Program options

• Run automatically when PQStat starts ‐ allows for one of three things to happen when
starting the program : open a new project, open a recently used project, or do nothing.

• Restore the size end location of a window when the program starts up again ‐ allows you
to start the program so that its window is in the same place and is of the same size of the
last window displayed immediately before closing the program.

• Multithreading. Maximum number of threads (system threads: 8) ‐ provides the ability to
execute tasks in multiple threads simultaneously (up to a maximum of eight threads).

• Decimal separator - from the system settings ‐ can be set as comma or period, or by default
chosen according to the settings of the operating system the program is running on.

• Automatiocally checks for updates when the aplication starts ‐ gives you the option to
check for and consequently install updates or to opt out of this service.

• Make tekst and other items of interface larger ‐ allows you to increase the font size and
the size of other interface elements, which will reduce the amount of information displayed
but may make it easier to read.

• Display Labels on variable lists ‐ Gives the option to display the labels of the variables (long
names of the variables) in the variables selection lists or as a hint to the names displayed
in those lists. This option will have the desired effect if the names of the variables have
assigned labels.

Sheet options
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• Maximum number of undo steps in sheet ‐ the number of possible actions you can undo
in the worksheet ‐ it affects the speed of the program, so the recommended number is 10.

• The maximum number of cells to remember in one step ‐ the number of worksheet cells,
the simultaneous change of which can be considered as one action to be remembered by
the programme. It affects the speed of the program therefore the recommended number
of cells is 5000.

• Sheet font ‐ allows you to set the font type that will be used to display the data contained
in the datasheet.

• Action for duble-click column header ‐ allows you to set what happens after double‐clicking
the column header. This can be: adjusting the columns width to fit the data inside, opening
the Code/Label/Format window, opening the Inspection window.

Analysis options

• Default significance level for testing ‐ gives the option to change the 0.05 significance level
proposed as a standard in statistical analysis windows.

• MachineEpsilon ‐ information about setting the Epsilonmachine size or calculationprecision
(1E‐16).

• Measure kurtosis ‐ information about the setting of the kurtosis calculation method (g2, or
Pearson’s b2), where a normal distribution is characterized by value zero of kurtosis g2 or
b2 close to the value of three.

• Sorting order for the contingency tables ‐ gives you the option to sort rows and columns
of a contingency table in ascending or descending order. This option not only affects the
displayed results in tables and graphs, but also affects those analyses based on contingency
tables for which the order of categories is important.

• Method to sort string values in alphabetical order ‐ Allows you to sort data and results
stored in text form naturally or alphabetically. Natural sort order is an improved alphabe‐
tical order, where multi‐digit numbers are treated indivisibly, i.e. as if they were a single
character. For example, in alphabetical sorting, ”a11” will be sorted before ”a2” because
”1” is less than ”2”, whereas in natural sorting, ”a2” is sorted before ”a11” because ”2” as
less than ”11”

• Labels for values. Show in analysis: ‐ gives you the choice of displaying in values or labels
corresponding to current values when using the filter or when the analysis requires setting
individual values of the selected variable.

Report options

• Displays a value rounded to the specified number of decimal places ‐ allows you to set the
maximum number of decimal places reported for real numbers.

• Displays a percentage rounded to the specified number of decimal places ‐ allows you to
set the maximum number of decimal places reported percentages.

• Exponential notation for p-value ‐ allows you to specify how the p‐values of statistical tests
are displayed in numeric form (with a defined number of decimal places) or in scientific
notation.

• Color for p-value below the significance level ‐ allows you to set the color that will be used
to indicate statistically significant results at the set level.
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• Report name in the navigation tree ‐ gives a choice of the type of information about exe‐
cuted analyses added to the name of analysis in navigation tree. It is possible to give only
the name of the test or the name together with: the time of its execution or the description
of the test, or the chosen filter, or the used grouping variable, or the names of the variables
involved in the analysis.

• Show variable values as item labels ‐ Gives the option to display the labels of the variables
(long names of the variables) in analysis reports. This option will have the desired effect
when the names of the variables have assigned labels.

• Report font ‐ allows you to set the font that will be used to display the result descriptions
included in the reports.

• Default plot size(width/height) ‐ allows you to set the default number of pixels for the
height and for the width of the graph.

• Default plot temlates ‐ gives you the ability to pre‐set chart options that are important to
user.

External tools

• Path to gnuplot binary files ‐ To be able to generate a 3D plot for the analysis of a nuclear
2D density estimator, the gnuplot program must be installed on the system.

• Path to IO module for SPSS Statistics ‐ To be able to read sav files (IBM SPSS Statistics
program data storage format), the IBM IO SPSS vendor module is required, so you have to
download the IO_Module_for_SPSS_Statistics_20001.zip. Formore information, see
http://manuals.pqstat.pl/statpqpl:installpl
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4 PROGRAM OPERATION

4 PROGRAM OPERATION

Documents management is based on projects. Each project is a separate file.
A project is similar to a worksheet. It consists of 3 basic elements:

1. Datasheets (includingmap sheets andmatrixs) ‐ the number of sheets in a given project is limited
to 1000,

2. Results sheets (reports) ‐ the number of reports in a given datasheet is limited to 2000,

3. Project manager – allows you to change the name of datasheets and result reports, create your
own descriptions and notes as well as export.

Up to 255 projects can be worked on simultaneously. The first project with an empty data sheet is
opened automatically when you start the program, if this option is set in the Program Settings window.

Further projects can be created via the menu

‐ File→New project (Ctrl+N)

‐ File→New datasheet (Ctrl+D)

Created projects (files with pqs, pqx extensions) we open via:

‐ File→Open project (Ctrl+O)

‐ File→Open examples ‐ applies to examples that come together with the program,
‐ dragging the project file into the application window,
‐ double‐clicking the project file.

The project can be saved via:

‐ menu File→Save project(Ctrl+S)

‐ File→Save project as...
‐ Save project button in the Project Manager.
Saving a project saves all project components to a file with the extension pqs or pqx.

The project can be closed via:

‐ menu File→Close project
‐ Close project button in the Project Manager.

For easy navigation, the Project Manager is displayed after selecting the appropriate project. In this
window you can save as well as delete the selected project, add or delete a datasheet, delete a result
reports as well as add notes. The project name is also the name of the project file (pqs/pqx).
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4.1 WORKING WITH DATASHEETS

The most important part of any project is the datasheet. Every open project must have at least one.

4.1.1 ADDING, REMOVING AND EXPORTING DATASHEETS

The first blank datasheet is opened automatically with a new project.
Subsequent datasheets can be added to the project via:

‐ menu File→New datasheet (Ctrl+D)
‐ New datasheet button in the Project Manager.

Datasheets can be deleted via:
‐ context menu Delete Sheet (Shift+Del) on the name of a datasheet in the Navigation tree,
‐ button→Delete in the Project Manager, if a datasheet is selected.
Note, however, that if you have reports or a map attached to a datasheet, deleting the datasheet also
deletes any reports/maps assigned to it.

Datasheets can be described in the Project Manager by adding a name, title or a note.

Data sheets created in PQStat can be exported to csv (txt) , dbf and xls formats. Exporting data is done
in the Project Manager via the button→Seve Sheet to..., if a datasheet is selected.

4.1.2 INPUTTING DATA INTO A DATASHEET

The datasheets are empty when created. The user enters data themselves, copies previously prepared
data from another data sheet, or imports it. The amount of data a worksheet can hold is limited to 4
million rows and 1000 columns. Each cell can contain a maximum of 40 characters.

IMPORTING DATA

Data can be easily imported from files saved in formats such as:
‐ *.xls/*xlsx,
‐ *.txt/*.csv with internal character encoding UTF8, Windows‐1250,
‐ *.shp (SHP/SHX/DBF ESRI Shapefile),
‐ *.dbf (dBase III, dBase IV, dBase VII),
‐ *.sav (SPSS),
‐ *.dbf (FoxPro).

To import click menu File→Import from ...
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In the import window you can preview the imported data and check the result of the import in advance,
depending on the set options for data interpretation. To avoid misinterpretation of special characters,
pay attention to these characters in the preview window. For large files, the preview window contains
only the initial portion of the file data.

Note
In Microsoft Office Excel 2000‐2007, the default character encoding is Windows‐1250. Importing data
fromMicrosft Excel documents applies only to cell values; formatting and formulas cannot be imported.

Copying data with relation

Data from another worksheet can be copied into the selected data sheet based on relations. This type

of data copying is performed by selecting menu: Data→Copying with relation...
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To build a relation, you must specify the data sheet from which you are copying and the data sheet in
which you will place the copied data. Both of these datasheets must have the same key, i.e. a variable
which values identify each row in the datasheet. It is required that the key for the source sheet is unique.
Linking is done on a one‐to‐many basis, whichmeans that one row in the source datasheet can be linked
to multiple rows in the target datasheet. The keys of both datasheets should be selected as Related
Variables. For such a relation, indicate the variables to be copied and the column after which to place
the copied variables.

4.1.3 DATASHEET WINDOW

The rows and columns of the datasheet are indicated by consecutive natural numbers. Each column in
the space marked in gray can be given its own heading. At the top of the datasheet is the Message bar.
This is where the current user information is displayed. The left part of the bar informs about the size of
the selected area [number of rows, number of columns], the middle part displays the value located in
the selected cell, and the right part is for the user’s information concerning, for example, the statistical
analysis being performed.
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4.1.4 VARIABLE PROPERTIES

For each column of the worksheet, we can set its properties such as codes, labels and format. Setting
the properties of a variable is possible by
‐ selecting Variable Properties → Codes/Labels/Format from the context menu on the number above
the column header,
‐ by double‐clicking on the number above the column header ‐ if it was specified in the program settings
(corresponding double‐click action).

Codes and labeles for the values – are assignable to each value in the column.
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Current value ‐ By filling in the codes we set the values to be valid in the given column. As
a result the values taken for calculations will be changed (in the background) to assigned
codes (valid values).
Label ‐ The values you enter under Lable are used in reports and charts for the user‐defined
result report.

Variable label ‐ is assigned to the header of a given column. This is usually a brief description of the
variable’s contents. The variable label is used instead of the column header (variable name) in reports
and charts for clearer description of the results. The use of the variable label is optional and depends
on the program settings.

Variable format
Each worksheet cell (including a column heading) may contain a maximum of 40 characters. Texts con‐
taining national characters are also allowed. Entered values can be formatted as:

• default ‐ default format is a format in which the program automatically recognizes the contents
of the cell in the range ‐ numeric data, text data;

• text ‐ in text format, data are interpreted as text (alignment to the left edge of the cell);

• date ‐ In date format, numeric data is interpreted as consecutive date values, so value 1 means
1899.12.31, value 2 means 1900.01.01 etc. Depending on the selected date format, you can also
enter data in text format, these are:

2010.12.31
31.12.2010
12.31.2010
2010/12/31
31/12/2010
12/31/2010
2010‐12‐31
31‐12‐2010
12‐31‐2010
Monday...
January...

For the format Monday..., the value 1 indicates Monday, ..., 7 indicates Sunday, for the format
January..., the value 1 indicates January, ..., 12 indicates December.

• time ‐ In the time format, numeric data is interpreted as consecutive time values, the fractio‐
nal part of the number means the number of milliseconds since midnight divided by the total
number of milliseconds of the day (86400000), so the value 0.000694444 means 00:01:00, the
value 0.041666667 means 01:00:00, the value 0.999988426 means 23:59:59. Depending on the
selected time format, it is also possible to enter data in text format, these are:

18:31:58
18:31

12/31/2010 18:31
12/31/2010 18:31:58

• numerical ‐ real numbers in this format are in decimal form with either a comma or a period
separating the whole from the fraction (depending on the settings you have chosen in Settings in
Decimal Separator), you can set the number of decimal places and the thousandths separator;
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• scientific ‐ that is, M · 10E , where the base is the mantissa of M , and the exponent E is an
integer; that is, using M times 10 to the power of E, where the base is the mantissa of M and the
exponent E is an integer; just as in numerical format, it is possible to set the number of decimal
places;

• percentage ‐ changing a number to a percentage by multiplying it by 100 and displaying it with
the % symbol; as in numeric format, it is possible to set the number of decimal places;

• currency ‐ are used for monetary values ‐ this allows you to add a currency symbol; as in the
numeric format, it is possible to set the number of decimal places;

• range ‐ written with upper and lower limits; as in the numeric format, it is possible to set the
number of decimal places;

• formula ‐ values calculated according to the formula assigned to the column; the value is auto‐
matically recalculated when any of the input data is changed.

When you open a new sheet, a default format is set for each cell.

The entire header row is permanently set to text format. User‐defined formats can be set for the rest
of the sheet. Formatting is not done for a single cell, but for the entire column (except for its header).

In the worksheet, you can specify the columnwidth using themouse. To do this, use themouse pointer
to drag a line dividing the columns, narrowing or widening the column to the left of the selected line.

Additionally, you can set a different background color in each cell of the worksheet (after selecting the
area to be changed). You can do it via:

‐ menu File→Fill color ...
‐ command Fill color in the cell’s context menu.

4.1.5 EDITING DATA

Selection of a consistent area in a worksheet can be done with mouse or keyboard (Arrow keys +
Shift). During selection, the size of the selection (number of rows and columns) is continuously display‐
ed in the message bar. You can select the entire worksheet by simply clicking in the upper left corner of
the worksheet with the mouse, or by selecting menu Edit→Select all (Ctrl+A). Whole rows or whole
columns are selected by selecting their headers.

Copying or moving cells is done through the copy, cut and paste commands.

The copy, cut and paste commands are available in several places:
‐ in menu Edit,
‐ in the context menu of cells,
‐ on the toolbar ,
‐ in the context menu for rows and columns,
‐ via hotkeys: copy (Ctrl+C), cut (Ctrl+X), paste (Ctrl+V).

Deleting data from cells can be performed via menu Edit→Delete (Del)

Undoing the most recently performed operation can be done via menu Edit→Undo (Ctrl+Z). By de‐
fault, the Program remembers the last 10 operations involving 5000 cells in each cell. You can change
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these settings in the Settings window. It should be noted, however, that increasing these values results
in greater use of computer memory by the program.

Inserting and deleting rows and columns

You can insert blank rows or columns above or to the left of an existing row or column. This will move
the cells down or to the right. To insert a row(s), select the row(s) above which you want to insert a
new row(s), and then choose Insert row from the context menu on the selected row number. Inserting
columns is done in the same way.

Rows and columns can also be deleted by selecting them and choosingDelete row/Delete column from
the context menu in the row or column number..

Finding/replacing a cell value

To find or replace the entire contents of a cell with another value, use the Find/Replace window, which

is accessible via menu Edit→Find/Replace (Ctrl+F) .

The upper part of the Find/Replace window is used for searching and the lower part is used for repla‐
cing cell values.

To search for data, enter a search string in the upper part of the window, select the search order and
choose the Find button.

To find and replace the entire contents of a cell with another value, fill in the upper and lower parts of
the window. Fill in the upper part of the window as you would for a data search. In the lower part of
the window type the data that you want to replace and choose Find and Replace or Find and Replace
All when you want to replace all the occurrences of the searched data. Searching as well as replacing is

Copyright ©2010‐2023 PQStat Software – All rights reserved 18



4 PROGRAM OPERATION

done in direct view mode of the operations performed on the sheet.

4.1.6 SORTING DATA

Sorting options are available by selecting menu Data→Sort... or Sort... functionality from the con‐
text menu on the number above the column header. Normally you sort the whole datasheet (this is
the default setting for sorting), but if you start sorting by selecting a piece of data, then in the sorting
window you will have the option to limit the sorting area only to the selection.

In the sorting window, use the arrows to move from the Move Variables box to the Sequence box those
variables by which you want to sort the data, then select Sort Order and confirm your selection by
pressing the Ok button.
You can sort by at most 3 columns (variables). If you sort data bymore than one variable, sorting is done
in the order in which the variables are placed in the Order box.

4.1.7 CONVERTING RAW DATA INTO A CONTINGENCY TABLE

The operation of changing raw data into a contingency table is available after selecting menu Da-
ta→Create table... Normally, the entire data sheet is available for this operation (this is the default

Copyright ©2010‐2023 PQStat Software – All rights reserved 19



4 PROGRAM OPERATION

setting), but if you start the transformation by selecting a piece of data, then in the data transformation
window you will have the option to limit the available area to the selection only.

You design the contingency table by selecting the variables that form the row and column labels. If the
preview of the table is consistent with the expected result, confirm your choice with Run. The returned
result will be placed in a new sheet.

4.1.8 CONVERTING A CONTINGENCY TABLE INTO RAW DATA

The operation of changing a contingency table into raw data is available after selecting menu
Data→Create raw data... In the data transformation window, enter the appropriate numbers and row
and column headings and confirm your choice with Run. The returned result will be placed in a new
sheet.
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If we are converting a table that is in the data sheet, then we select that table (with or without headers)
before converting it to raw data. This table will then be automatically placed in the data transformation
window. It is also possible to use other tables marked as fill with saved selection.

4.1.9 FORMULAS

Defining a formula is a way to recalculate data, resulting in new values in variables.

The window for defining formulas is opened via Data→Formulas...

Formulas assigned to a datasheet variable as the format of that variable are stored with the worksheet
data. Their result is automatically recalculated when any of the input data is changed. Formula can be
assigned in th Formula... window or by setting the Column format (Ctrl+F10).
Creating formulas

Formulas are entered in the edition box.

• The variables referred to in the formulas are entered with their numbers, e.g v1+v2

• Text values are entered using an apostrophe, e.g. ’house’.

• You can enter functions by double‐clicking on the name of the selected function ‐ then the name
will appear in the formula edition box, or you can enter the name yourself in the edition box,
though the function name is case‐insensitive. The function arguments are given in brackets using
the syntax given in the function description.

Results of formulas

The results of formulas will be displayed in the selected column.

If the function’s arguments include values that it cannot interpret, the program displays a message
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askingwhether to ignore the uninterpreted variables. If you choose Yes, the formulawill be recalculated
by omitting the unexpanded data. If you choose No, the formula returns error (NA). For example, for the
values in columns v1, v2 and v3 respectively: 1, 2, ’ada’, the sum function sum(v1;v2;v3) will return
a result of 3 ‐ when omitting the uninterpreted value ’ada’, or will return NA ‐ when not omitting this
value from the calculation.

An empty value (no data) will be returned only if all arguments used in the formula are empty.

You can limit the number of rows involved in a formula by selecting the appropriate number of rows in
the datasheet and choosing only from selected rows in the formula window.

Operators
+ addition,
− subtraction,
∗ multiplication,
/ division,
% modulo division (resulting in the remainder of the division),
> greater,
< less,
= equal.

Mathematical functions
Mathematical functions require numeric arguments.
ln(v1) ‐ outputs the natural logarithm of the given number,
log10(v1) ‐ outputs the logarithm of the base 10 for a given number,
logn(v1) ‐ outputs the logarithm of n for the given number,
sqr(v1) ‐ outputs the square of the given number,
sqrt(v1) ‐ outputs the square root of the given number,
fact(v1) ‐ outputs the power of a given number,
degrad(v1) ‐ outputs the angle in radians (the argument of the function is in degrees),
raddeg(v1) ‐ outputs the angle in degrees (the argument of the function is in radians).,
sin(v1) ‐ outputs the sine of the given angle, (the argument of the function is in radians),
cos(v1) ‐ outputs the cosine of the given angle, (the argument of the function is in radians),
tan(v1) ‐ outputs the tangent of the given angle, (the argument of the function is in radians),
ctng(v1) ‐ outputs the cotangent of the given angle, (the argument of the function is in radians),
arcsin(v1) ‐ outputs the arcus sine of the given angle, (the argument of the function is in radians),
arctan(v1) ‐ outputs the arcus tangent of the given angle, (the argument of the function is in
radians),
exp(v1) ‐ outputs the value of the number e raised to the power specified by the given value,
frac(v1) ‐ outputs the fractional part of a given number,
int(v1) ‐ outputs the integer part of a given number,
abs(v1) ‐ outputs the absolute value of the specified number,
odd(v1) ‐ if given number is even, outputs 1, 0 otherwise,
sum(v1;...) ‐ outputs the result of adding the specified numbers,
multip(v1;...) ‐ outputs the result of multiplication of specified numbers,
power(v1;n) ‐ outputs the result of raising a number to the power of n,
norme(v1;...) ‐ outputs the Euclidean norm of the vector,
round(v1;n) ‐ outputs a number rounded to n decimal places.

Statistical functions
Statistical functions require numeric arguments.
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stand(v1) ‐ outputs the standardized value of the specified variable,
max(v1,...) ‐ outputs the largest value,
min(v1,...) ‐ outputs the smallest value,
mean(v1,...) ‐ outputs the value of the arithmetic mean,
meanh(v1,...) ‐ outputs the value of the harmonic mean,
meang(v1,...) ‐ outputs the value of the geometric mean,
median(v1,...) ‐ outputs the median value,
q1(v1,...) ‐ outputs the value of the bottom quartile,
q3(v1,...) ‐ outputs the value of the top quartile,
cv(v1,...) ‐ outputs the value of the coefficient of variation,
range(v1,...) ‐ outputs the value of the interval,
iqrange(v1,...) ‐ outputs the value of the quartile interval,
variance(v1,...) ‐ outputs the variance value,
sd(v1,...) ‐ outputs the value of the standard deviation.

Text functions
Text functions work on any string.
upperc(v1) ‐ converts characters from a string to uppercase,
lowerc(v1) ‐ converts characters from a string to lowercase,
clean(v1) ‐ removes characters that cannot be printed,
trim(v1) ‐ removes leading and trailing spaces,
length(v1) ‐ outputs the length of the string,
search(’abc’;v1) ‐ outputs the position of the beginning of the searched text,
concat(v1;...) ‐ combines texts,
compare(v1;...) ‐ compares texts,
copy(v1;i;n) ‐ returns a portion of text starting from the i‐th character, where n is the number of
returned characters,
count(v1;...) ‐ outputs the number of cells that are not empty,
counte(v1;...) ‐ outputs the number of cells that are empty,
countn(v1;...) ‐ outputs the number of cells that contain numbers.

Date and time functions
Date and time functions should be used on data formatted as date or time (see chapter 4.1.4). If
this is not the case, the program tries to automatically recognize the format, and if not possible
gives the value NA.
year(v1;) ‐ outputs the year corresponding to the date,
month(v1;) ‐ outputs the month corresponding to the date,
day(v1;) ‐ outputs the day corresponding to the date,
hour(v1;) ‐ outputs the time corresponding to the specified time,
minute(v1;) ‐ outputs the minute corresponding to the specified time,
second(v1;) ‐ outputs the second corresponding to the specified time,
yeardiff(v1;v2) ‐ outputs the number of years separating two dates,
monthdiff(v1;v2) ‐ outputs the number of months separating two dates,
weekdiff(v1;v2) ‐ outputs the number of weeks separating two dates,
daydiff(v1;v2) ‐ outputs the number of days between two dates,
hourdiff(v1;v2) ‐ outputs the number of hours between the two times,
minutediff(v1;v2) ‐ outputs the number of minutes separating the two times,
seconddiff(v1;v2) ‐ outputs the number of seconds separating the two times,
compdate(v1;v2) ‐ compares dates and outputs the number 1 when v1>v2; 0 when v1=v2, ‐1
when v1<v2.
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Logic functions
if(question;’yes ‐ answer’;’no ‐ answer’) ‐ a question is formulated as an expression that can be
true or false; the function outputs one value if the expression is true and the other if it is false,
and ‐ conjunction operator ‐ returns true (1) when all conditions it combines are true, false (0)
otherwise,
or ‐ the alternative operator returns true (1) when at least one of its conditions is true, false (0)
otherwise,
xor ‐ disjunctive alternative operator ‐ returns true (1) when one of the conditions it combines is
true, false (0) otherwise,
not ‐ negation operator used in a conditional statement if,
empty(v1) ‐ outputs true (1) when empty cells are present, false (0) otherwise,
text(v1) ‐ outputs true (1) when text is present, false (0) otherwise,
number(v1) ‐ outputs true (1) when a number is present, false (0) otherwise.

4.1.10 DATA GENERATION

There are two methods of data generation:
1. The first method uses simple dragging of the contents from the selected cells to the neighboring

cells using the mouse pointer. This method lets you generate the same values (text or numbers)
in neighboring columns or rows.
To generate, start by selecting the cell with the appropriate data , then use the mouse pointer
depicted by the+ sign to grab the bottom right corner of that cell and drag through the cells you
want to fill. Dragging a single cell can be done in any direction (up, down, left and right). It is also
possible to drag different values placed in one column (left or right) or in one row (up or down).

2. The secondmethod generates numerical data in columns as data series, random values, and ran‐
dom values from an appropriate data distribution.
To generate numeric data, select the cell fromwhich you want to start filling in the datasheet and
open the numeric data generation window from the menu Data→Generate...

You start by selecting the variable in which the generated data will be placed.
In the middle part of the window, depending on the settings of the method of data generation
selected above, we set:
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• For generating data series:
‐ Start value ‐ the first value to be generated,
‐ Increment ‐ the value by which the subsequent generated data is to vary.

• For generating random values:
‐ Lower limit ‐ the beginning of the interval fromwhich the values will be randomly selected,
‐ Upper limit ‐ The end of the interval from which the values will be randomly selected.

• For generating random values from a distribution, select the type of distribution (Normal
distribution, Chi‐square distribution) and enter its parameters.

The amount of data generated depends on the value the user enters in theCount box, and the precision
depends on the setting of the Decimal places box. The data will be filled in starting from the active cell
in either down or up ‐ depending on the selected option. Finally, confirm your selection with Apply.

4.1.11 MISSING DATA

In researchwe very often encountermissing data, this is natural in particular for survey data. There
are situations in which missing data provides valuable information. For example: the number of missing
data items in response to a question about support for political parties gives an idea about the number
of undecided people who do not like (or do not admit to liking) certain political groups. Small numbers
of missing data are not a problem in statistical analyses. A large number of them, however, may cast
doubt on the reliability of the research. It is worth at the very beginning of the work to make sure that
there is as little missing data as possible. Of course, it is best to find information about the actual value
that should be put in the place of missing data, but this is not always possible.

How missing data are estimated depends primarily on the nature of the data. The program proposes
several ways to impute missing data for individual variables.

The Missing data substitution settings window accessed via menu Data→Missing data...
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1. Filling with one value

Selecting one of the following options will replace all missing data in the selected column with
the same value:

• specified by the user,
• the arithmetic mean calculated from the data,
• the geometric mean calculated from the data,
• the harmonic mean calculated from the data,
• the median,
• the mode (unless it is multiple).

2. Filling with multiple values

Selecting one of the following options will replace the missing data in the selected column with
multiple (usually different) values. These values can be predicted from the column for which the
missing data is filled, but they can also be predicted from the values of other columns (variables).
You can replace missing data with values:

• random from the data;
• random from normal distribution ‐ normal distribution is defined by themean and standard

deviation of the existing data;
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• with random values from an interval specified by the user;
• calculated from user functions ‐ this option allows you to use data from other variables to

predict the missing value in the selected column;
• predicted from the regressionmodel ‐ this option allows to predict the value ofmissing data

based on the multiple regression model (the functioning of multiple regression is described
in the section 24.2 Multiple linear regression);

• interpolation based on neighboring values ‐ applies to time series ‐ so the usermust indicate
the time variable indicating the order of data; interpolation involves the determination of
values for the missing data in such a way that they are graphically located on the straight
line connecting values for data adjacent to the missing data;

• the average of n neighbors ‐ applies to time series ‐ Thus, the user must indicate the time
variable that tells the order of the data; interpolation works by determining the average of
the values for n neighbors preceding and n neighbors immediately following the missing
data;

• median from n neighbors ‐ applies to time series ‐ thus the user must indicate the time
variable telling about the order of the data; interpolation works by determining the median
from the values for n neighbors preceding and from n neighbors immediately following the
missing data;

Note
In order to be able to distinguish between imputed and real data, the replaced spaces are marked with
a chosen color.

EXAMPLE 4.1. (missingData‐publisher.pqs file)
Analysis of the publisher.pqs file with no missing data is discussed in Multiple linear regression. This
time we are going to deal with a datasheet in which there are missing data in the column containing
gross profit from book sales. For these missing data, the actual values are known (datasheet: ”REAL VA‐
LUES”), so you can compare the values generated by the program for the missing data with the actual
values to compare the results obtained by different techniques. In the example, we will use 2 ways of
replacing missing data: replacing with the median value and the value determined by the regression
model. The other options are left to you to work on your own.

Replacing missing data with the median value is done on datasheet 1 called ”Insert the median”. Set
the variable prepared to be inputed as gross profit in the Missing data window and select the method
of replacement as the median value. This will result in a value of 46 850 dollars being inputed in place
of the missing data.

It is suspected that profits are higher when dealing with books from known authors (coded as 1) and
lower when dealing with those from unknown authors (coded as 0). So we calculate the median gross
profit separately for books by known and unknown authors.Weperform the imputation on the datashe‐
et named ”Insert two medians”. We set the filter twice for the variable defining the authors’ popularity
(variable 7) ‐ once giving the value 1 and once giving the value 0. The resultingmedian gross profit in the
group of books by popular authors is about 51 000 dollars, and among those by lesser‐known authors
it is about 34 000 dollars.

Another way to replace missing data, is to use a regression model. Select the ”Insert from regression”
datasheet and once again select the gross profit variable as the variable to be inserted, and select ”Va‐
lues predicted from regression” as the method of substitution. There will be more variables used to
predict the value of gross profit this time: production costs (variable 3), advertising costs (variable 4)
and authors’ popularity (variable 7). This time the results seem to be less different from the real values,
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unfortunately the result for the item number 35 ismissing, because for this bookwe had no information
about the cost of production, on which, among other things, we wanted to base the prediction.

4.1.12 TRANSFORMATIONS

The transformation window is accessed via Data→Transform...

Data transformation is the alteration of data so that itmeets certain criteria, such asmeeting the criteria
for normality of distribution or extending within a specified range.

Box‐Cox transformation
The Box‐Cox transformation introduced by Box and Cox in 1964 [24] brings the data to a normal
distribution through a transformation based on the coefficient λ. Positive data are required to
perform the transformation. If the data are not positive, it is recommended to first transform
them to positive numbers using the min‐max normalization method.

The Box‐Cox transformation is expressed by the formula:

x′ =

{
xλ−1
λ for λ ̸= 0

ln(x) for λ = 0,
(1)

where the value of λ is determined as the maximum value of the log‐likelihood function (LL) in
the interval specified by the researcher. The default range for searching for λ values is the range
[‐5, 5], and the LL function is described by the formula:

LL = −n

2
ln(sd2pop) + (λ− 1)

∑
lnx (2)

where:
n ‐ sample size,
sdpop ‐ population standard deviation.

Note
If min‐max normalization was used before the Box‐Cox transformation, then after the Box‐Cox
transformation, you can return to the previous range by using this transformation again.
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Logarithmic normalization
The logarithmic transformation can be used to reduce the skewness of the distribution i.e. when
we are dealing with a lognormal distribution.

x′ = lnx (3)

Standardization
Standardization, is a transformation of data that results in a variable having a mean of 0 and a
standard deviation of 1.

x′ =
x− x̄

sd
(4)

Ranking
Ranks ‐ are consecutive numbers (usually natural) assigned to the values of ordered measure‐
ments of the variable under study. They are often used in those nonparametric tests that rely
solely on the order of items in the sample. Assigning ranks calculated according to a variable is
called ranking. Ranking can be done for variables sorted ascendingly (this is the default setting)
or descendingly.

Recurring values of a variable are assigned a tied rank. The tied rank can be a/an:
‐ arithmetic mean calculated from the proposed consecutive natural numbers for repeated valu‐
es ‐ this is the default setting;
‐ lower rank, i.e., the smallest limit proposed for consecutive repeated values of natural numbers;
‐ the upper rank, meaning the largest proposed for consecutive repeated values of natural num‐
bers.

For example, for a variable with the following values: 8.6, 5.3, 8.6, 7.1, 9.3, 7.2, 7.3, 7.4, 7.3, 5.2,
7, 9.9, 8.6, 5.7 the following ranks are assigned:

sorted values of the variable ranks
5.2 1
5.3 2
5.7 3
7 4
7.1 5
7.2 6
7.3 7.5
7.3 7.5
7.4 9
8.6 11
8.6 11
8.6 11
9.3 13
9.9 14

While for the variable with a value of 7.3 a tied rank calculated as the arithmetic mean of the
numbers:7 and 8 is assigned, and for a variable with value 8.6 a tied rank calculated from the
numbers: 10, 11, 12 is assigned.

Min/max normalization
The min/max normalization through a linear function puts the data into a user‐specified range
(newmin, newmax). You should know the range that the data can cover. If you do not know the
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range, you can use the largest and smallest value in the analyzed set (in the Transformation win‐
dow, then select the Calculate from sample option)..

x′ =
x−min

max−min
· (newmax − newmin) + newmin (5)

Logistic normalization
Normalization using a logarithmic (S‐shaped) function puts the standardized data into the indica‐
ted range.

x′ =
ex

1− ex
(6)

If you want to stretch the transformed data over a range other than the specified one, then enter
the span of the new range in the Transformation window.

Normalizing function with coefficient
This normalization brings the standardized data into the indicated range using an S‐shaped func‐
tion with a changing normalization factor α.

x′ =
x√

x2 + α
(7)

Increasing the α value creates a graph with a smoother slope.
If you want to stretch the transformed data over a range other than the specified one, then enter
the span of the new range in the Transformation window.

Multiple response coding
This type of coding allows the answers given tomultiple‐choice questions to be prepared in such a
way as to facilitate their further statistical processing. As a result of applying this transformation,
a selected variable with k‐possible answers is broken down into k new variables. It is necessary to
specify which character (or set of characters) is a separator of particular categories. For example,
respondents were asked what kind of alcohol they drink? The data is stored in Alcohol column,
separating multiple answers with semicolon sign. This way of storing data does not even allow
for a simple summary. Among other things, it is not possible to quickly count how many people
drink wine. After recoding the multiple responses, three new columns were obtained ‐ one for
each possible answer. Each of these columns can now be statistically analyzed.

Alcohol Alcohol(beer) Alcohol(wine) Alcohol(vodka)
beer;wine 1 1 0

wine 0 1 0
wine 0 1 0
beer 1 0 0

vodka;wine 0 1 1
wine;vodka 0 1 1
beer;vodka 1 0 1

beer;wine;vodka 1 1 1

Dummy coding
Transforming a variable with k categories by dummy coding allows you to obtain k − 1 dummy
variables. This form of transformation is primarily used in regression models. A detailed descrip‐
tion of this type of transformation can be found in 24.1 PREPARING VARIABLES FOR ANALYSIS IN
MULTI‐DIMENSIONAL MODELS.
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Effect coding
Transforming a variable with k categories by effect coding yields k−1 dummy variables. This form
of transformation is used primarily in regression and ANOVA models. A detailed description of
this type of transformation can be found in 24.1 PREPARING VARIABLES FOR ANALYSIS IN MULTI‐
DIMENSIONAL MODELS.

Division into categories
This way of preparing data allows for any division of variables, e.g. total cholesterol can be divided
according to the current standards (choose Manual division, set the number of categories and
enter their limits ourselves and give appropriate labels to each category). However, if we do not
have an idea for dividing our data, we can use the automatic division options presented in the
window. Possible ways of dividing a variable:

• Natural breaks (Jenks) ‐ a method of dividing a variable into classes such that the variance
within classes is minimized and the variance between classes is maximized.

• Division by Quantiles ‐ a method of dividing a variable into classes of equal frequency.
• Standard Deviation ‐ a method of dividing a variable into classes based on its distance from

the mean by 1, 2, or more standard deviations.
• Standard error of the mean ‐ a method of dividing a variable into classes based on the

distance from the mean by 1, 2, or more standard errors of the mean.
• Manual ‐ a method of dividing a variable into classes according to any division entered ma‐

nually by the user.

In the division window, it is also possible to select Add color scheme then the column that will
store the new data will be color coded according to the indicated scheme.

EXAMPLE 4.2. (normalization.pqs file)
Perform a transformation on the variables contained in the file:
a) Transform the value of triglycerides using the Box‐Cox transformation and then check with the ap‐
propriate test whether the data have a normal distribution.
b) Transform the value of triglycerides using the logarithmic transformation and then check with the
appropriate test whether the data have a normal distribution.
c) Using min‐max normalization, transform the selected variables to the range [0,10].
d) Using logistic normalization, transform the selected variables to the specified range.
e) Using normalization with a coefficient, transform the selected variables to the specified range. Do it
several times, changing the value of the coefficient α.
f) Standardize all data that are normally distributed.
g) Transform the variable showing how body weight changed during the diet so that it represents a
normal distribution.
h) The question about past infectious diseases was a multiple choice question. Prepare the obtained
answers to this question so that they can be further statistically processed i.e. record each of the mul‐
tiple answers in a different column.
i) Prepare the education variable so that it is stored using dummy variables with dummy coding.
j) Prepare the total cholesterol variable by dividing it into 3 classes according to the percentiles (quar‐
tiles). Give the created classes labels : ”low”, ”average”, ”high” and choose the color scheme.

4.1.13 DIRECT AND INDIRECT STANDARDIZATION

We bring up the direct and indirect standardization window for epidemiological coefficients
via Data→Standardization...
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Indirect and direct standardization applies to frequency coefficients, e.g. prevalence rates. Direct com‐
parison of raw rates between different populations, usually living in different geographical areas and
differing in factors that may influence the rates (e.g. age), may hide the differences. In order to remove
the influence of population structure on these confounding characteristics, comparisons can be made
using standardized coefficients. Standardization offers a mechanism to ”filter out” the influence of a
known confounding factor (e.g. age) and makes standardized coefficients obtained from different po‐
pulations comparable. A necessary step in the process of standardizing coefficients is the selection of
a standard population. The standard population for a population occupying a certain geographical area
at a certain timemay be a population covering a larger geographical area, including the study area, e.g.
if the study population is the population of Wielkopolska voivodeship, the population of Poland may be
used as a standard population. It is also possible to select a completely different population, geogra‐
phically distant from the study population. However, it is advisable that the population chosen should
be the reference population not only for the study in hand, but also for many other researchers. This is
because it gives the opportunity to compare the results of studies using the same standard population.
When choosing a population, it is recommended to pay attention to several aspects of the selection,
such as:

• if several populations are being compared, a shared standard population minimizes the variance
(variability) of the resulting standard coefficients;

• in trend analysis, the recommended standard population is the one that represents the average
structure for the analyzed time period;

• the standard population should be as similar as possible to the studied population;

• the same standard population should be consistently chosen to ensure comparability of studies
(choosing a different standard population than the one commonly used means that all historical
data would have to be recalculated).
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Age and gender are the most commonly used characteristics for standardization, however, the stan‐
dardization can also be based on other, arbitrary characteristics, which due to their obvious impact
on the phenomenon should be ”filtered out” from the study. Such features are called disturbing or
confounding features. When choosing a characteristic for which we want to standardize, it should be
remembered that standardization will be possible if we have sufficient information about the distribu‐
tion of that characteristic in the population under study and in the standard population (Table 1). In
addition, standardization by selected trait, e.g., by age, compensates to some extent for the influence
of other age‐related confounding factors, such as lifestyle, and standardization by gender compensates
for those factors that are gender‐related, such as occupation. The compensation of other factors is thus
an important aspect in the selection of the trait against which standardization is performed.

Types of standardization:

• direct standardization – the standardized prevalence rate obtained with this method gives what
the prevalence of the disease would look like in the study population if it had the structure (e.g.,
age structure) of the reference population;

• indirect standardization – the standardised prevalence rate obtained with this method gives an
indication of what the prevalence of a disease in the study population would look like if the pre‐
valence of the disease in the study population were the same in particular categories (e.g. age
categories) as in the reference population.

4.1.14 SAMPLING SIMULATION

The sampling window is opened via Data→Sampling simulation ...

Sampling simulation is a way of generating multinomial distribution data. It involves assigning a given
number of cases to categories, in a user‐specified manner. The generated data is returned in a new
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datasheet. The generation can be repeated, so that the datasheet will have many generated columns
depending on the number of repetitions of this operation set in the sampling window.

Options:

H0 ‐ the null hypothesis assumes an even distribution of all cases across categories.

HA ‐ the alternative hypothesis assumes an uneven distribution of cases. Selecting this option requires
indicating categories with higher probability or relative risk. Information about the defined pro‐
bability or relative risk for each category should be entered into the selected datasheet column
prior to conducting the analysis.

Probability should be defined as a value between 0 and 1, with the sum of the probabilities given
for all categories being 1.

Relative Risk defines risk relative to other categories and is a value greater than 1 for the incre‐
ased risk category and a fraction less than 1 for the reduced risk category.

Setting the probability or relative risk values to the same level for all categories, is the same as
the distribution for H0.

Constant population ‐ assumes that the user is interested in distributing the cases according to the
proposed distribution.

Variable population ‐ assumes that the user is interested in distributing the cases such that the pro‐
portion of cases to the population is distributed according to the proposed distribution.

EXAMPLE 4.3. (simulations.pqs file)
As a basis for the simulation, the population of Wielkopolska in 2013 was used, which according to
the CSO was N = 3467016 people. The voivodeship is divided into 315 municipalities. The municipa‐
lities differ significantly in the number of inhabitants. The most populous municipality (the capital of
the province) 548028 inhabitants, the least populous 1454 inhabitants, the median and quartiles are
respectively: 6298 (4462; 9621) inhabitants. Assuming that in 2013 there were 6934 residents of the
voivodeship with disease X, it is necessary to simulate the distribution of the sick people in such a way
as to obtain:

1. Random distribution (based on data from the ”Random” datasheet)

2. Four times higher disease frequency in the indicated municipalities than in the rest of the voivo‐
deship (based on data from the ”Clusters” datasheet)

Ref 1. It should be noted that an uniform random distribution of 6934 patients does not imply a similar
number of patients in each municipality. It is known that municipalities with a larger number of
those at risk should have a corresponding larger number of patients than those with a smaller
population. It is therefore of interest to distribute the patients in such a way that the ratio of pa‐
tients to population is relatively constant. This implies accepting the null hypothesis H0 and the
population variable. The number of individual municipalities was recorded in a column named:
population.

The data drawn based on these assumptions are presented in the first column of the new data‐
sheet. To be able to observe the random distribution of illness rates across municipalities, copy
the resulting data into the ”Random” datasheet of column ”S1”. The formula in column 7will then
be recalculated (you can view and change the formula by setting Codes/Labels/Format in the co‐

lumn properties). On the map, the result is shown using the Map manager from the Spatial
Analysis menu. The proportion of patients to population in each municipality is then plotted. An
example of the result is shown on the map below.

Copyright ©2010‐2023 PQStat Software – All rights reserved 34



4 PROGRAM OPERATION

Ref 2. In the ”Clusters” datasheet, as in the previous task, the frequency for the study population is
given. This time the higher frequency is expected in some municipalities (indicated on the map),
so in addition, in the next column of the datasheet, the value of the relative risk for individual
municipalities is presented, setting it to 4, for municipalities with increased risk and 1 for the
remaining municipalities.

Appropriate sampling requires that you select the alternative hypothesis HA (by selecting the
relative risk column) and the population variable (by indicating the population size column of the
municipalities). The data drawn under these assumptions are presented in the first column of the
new datasheet.

To be able to observe the distribution of the coefficient, assuming greater risk in the indicated
municipalities, copy the result obtained to the datasheet ”Clusters” column ”S1”. The formula in
column 7 will then be recalculated. On the map, the obtained result is presented using the Map

manager from the Spatial Analysis menu. The proportion of ill people to population in each
municipality is then plotted. An example of the result is shown on the map below.
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4.1.15 SIMILARITY MATRIX

The relationship between objects can be expressed by their distances or more generally by their
dissimilarity. The further apart the objects are, the more dissimilar they are, while the closer together
they are, the greater their similarity. It is possible to examine the distance of objects in terms of many
features, e.g. when compared objects are cities, their similarity can be defined, among others, based on:
length of the road that connects them, population density, GDP per capita, pollution emissions, average
real estate prices, etc. With so many different features you have to choose the measure of distance in
such a way, that it best reflects the actual similarity of objects.

The window with the settings for the macierzy podobieństwa options is opened via Data→Matrices...

We express the dissimilarity/similarity of objects by means of distances which are most oftenmetrics.
However, not every measure of distance is a metric. For a distance to be called a metric it must meet 4
conditions:

1. the distance between objects cannot be negative: d(x1, x2) ≥ 0,
2. the distance between two objects is 0 if and only if they are identical: d(x1, x2) =

0 ⇐⇒ x1 = x2,
3. the distance must be symmetric, i.e., the distance from object x1 to x2 must be the

same as from x2 to x1: d(x, y) = d(y, x),
4. the distance must meet the triangle requirement: d(x, z) ≤ (x, y) + d(y, z).

Note
Metrics should be calculated for features with the same value ranges. If not, then features with higher
ranges would have a greater impact on the similarity score than those with lower ranges. For example,
when calculating similarity between people, we can base it on such features as body mass and age.
Then body mass in kilograms, in the range of 40 to 150 kg, will have a greater influence on the result
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than age in years, in the range of 18 to 90 years. To ensure that the effect of each characteristic on
the resulting similarity score is balanced, you should normalize/standarize each characteristic before
proceeding with the analysis. On the other hand, if you want to decide the magnitude of this influence
yourself, after applying the standardization, indicating the type of metric, you should enter the weights
you gave yourself.

Distance/Metrics:

Euclidean
When talking about distance without defining its type, one assumes that it is Euclidean distance ‐
the most common type of distance that is a natural part of real world models. Euclidean distance
is a metric and is given by the formula:

d(x1, x2) =

√√√√ n∑
k=1

(x1k − x2k)
2

Minkowski
TheMinkowski distance is defined for parameters p and r equal to each other ‐ it is then ametric.
This type of metric allows one to control the similarity calculation process by specifying values of
p and r included in the formula:

d(x1, x2) = p

√√√√ n∑
k=1

|x1k − x2k|r

Increasing the parameter r increases the weight assigned to the difference between objects for
each feature, changing p gives more/less importance to closer/farther objects. If r and p are
equal to 2, Minkowski distance reduces to Euclidean distance, if they are equal to 1, to CityBlock
distance, and with these parameters approaching infinity, to Chebyshev metric.

CityBlock (otherwise: Manhattan distance or cab distance)
This is a distance that allows you to move in only two directions perpendicular to each other. This
type of distance is similar to moving on perpendicularly intersecting streets (a square street grid
that resembles the layout of Manhattan). This metric is given by the formula:

d(x1, x2) =
n∑

k=1

|x1k − x2k|

Chebyshev
The distance between the objects being compared is the greatest of the distances obtained for
each characteristic of those objects:

d(x1, x2) = max
k

|x1k − x2k|

Mahalanobis
Mahalanobis distance is also called statistical distance. It is a distance weighted by the covariance
matrix, by which objects described by mutually correlated characteristics can be compared. The
use of Mahalanobis distance has two main advantagesi:

1) Variables for which larger variances or larger ranges of values are observed do not
have an increased effect on the Mahalanobis distance score (since when using a cova‐
riance matrix you standardize the variables using the variance located on the diago‐
nal). As a result, there is no requirement to standardize/normalize the variables before

Copyright ©2010‐2023 PQStat Software – All rights reserved 37



4 PROGRAM OPERATION

proceeding with the analysis.

2) It takes into account the mutual correlation of the characteristics describing the
compared objects (using the covariance matrix it uses the information about the rela‐
tionship between the characteristics located outside the diagonal of the matrix).

d(x1, x2) =
√

(x⃗− y⃗)TS−1(x⃗− y⃗)

The measure calculated in this way meets the conditions of the metric.

CoSine
The Cosine distance should be calculated using positive data because it is not a metric (it does
not meet the first condition: d(x1, x2) ≥ 0). So if you have features that also take negative values
you should transform them beforehand using, for example, normalization to an interval spanned
by positive numbers. The advantage of this distance is that (for positive arguments) it is limited
to the range [0, 1]. The similarity of two objects is represented by the angle between two vectors
representing the features of those objects.

d(x1, x2) = 1−K,

whereK is the similarity coefficient (cosine of the angle between two normalized vectors):

K =

∑n
k=1 x1kx2k√∑n

k=1 x
2
1k

√∑n
k=1 x

2
2k

Objects are similar when the vectors overlap ‐ then the cosine of the angle (similarity) is 1 and
the distance (dissimilarity) is 0. Objects are different when the vectors are perpendicular ‐ then
the cosine of the angle (similarity) is 0 and the distance (dissimilarity) is 1.

Example ‐ comparing texts
Text 1: several people got on at this stop and one person got off at the next stop
Text 2: at the bus stop, one lady got off and several got on
One wants to know how similar the texts are in terms of the number of the same words, but is
not interested in the order in which the words occur.

You create a list of words from both texts and count how often each word occurred:

SŁOWA na tym przystanku wsiadło kilka osób a następnym wysiadła jedna Pani
tekst 1 2 1 1 1 1 1 1 1 1 1 0
tekst 2 1 0 1 1 1 0 1 0 1 1 1

The cosine of the angle between the vectors is 0.784465, so the distance between them is not
large d(tekst1, tekst2) = 1− 0, 784465 = 0.215535.
In a similar way, you can compare documents by the occurrence of keywords to find those most
relevant to the search term.

Bray‐Curtis
The Bray‐Curtis distance (measure of dissimilarity) should be calculated using positive data be‐
cause it is not a metric (it does not meet the first condition: d(x1, x2) ≥ 0). If you have features
that also take negative values, you should transform them beforehand using, for example, nor‐
malization to an interval spanned by positive numbers. The advantage of this distance is that (for
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positive arguments) it is limited to the interval [0, 1], where 0 ‐ means that the compared objects
are similar, 1 ‐ dissimilar.

d(x1, x2) =

∑n
k=1 |x1k − x2k|∑n
k=1(x1k + x2k)

(8)

In calculating the similarity measureBC, we subtract the Bray‐Curtis distance from the value 1:

BC = 1− d(x1, x2) (9)

Jaccard
Jaccard’s distance (measure of dissimilarity) is calculated for binary variables (Jaccard, 1901),
where 1 indicates the presence of a feature 0‐ its absence.

object 1
1 0

object 2 1 a b
0 c d

The Jacckard distance is expressed by the formula:

d(x1, x2) = 1− J. (10)

where:

J = a
a+b+c ‐ Jaccard similarity coefficient.

Jaccard similarity coefficient is in the range [0,1], where 1 means the highest similarity, 0 ‐ the
lowest. Distance (dissimilarity) is interpreted in the opposite way: 1 ‐ means that the compared
objects are dissimilar, 0 ‐ that they are very similar. The meaning of Jaccard’s similarity coefficient
is well described by the situation involving the choice of goods by customers. By 1 we denote
the fact that the customer bought the given product, 0 ‐ the customer did not buy this product.
Calculating the Jaccard coefficient you compare 2 products to find out what part of the customers
buy them in together. Of coursewe are not interested in information about customerswhodid not
buy either of the compared items. Instead,we are interested in howmanypeoplewho choose one
of the comparedproducts choose the other one at the sametime. The suma+b+c ‐ is the number
of customers who chose either of the compared items, a ‐ is the number of customers choosing
both items at the same time. The higher Jaccard’s similarity coefficient, the more inseparable the
products are (the purchase of one is accompanied by the purchase of the other). The opposite
will happen when we get a high Jaccard dissimilarity coefficient. It will indicate that the products
are highly competitive, i.e. the purchase of one will result in the lack of purchase of the other.

The formula for Jaccard’s similarity coefficient can also be written in general form:

J =
∑n

k=1 x1kx2k∑n
k=1 x

2
1k

∑n
k=1 x

2
2k−

∑n
k=1 x1kx2k

proposed by Tanimoto (1957). An important feature of Tanimoto’s formula is that it can also be
computed for continuous features.
For binary data, Jaccard’s and Tanimoto’s dissimilarity/similarity formulas are the same andmeet
the conditions of themetric. However, for continuous variables, Tanimoto’s formula is not ametric
(does not meet the triangle condition).

Example ‐ comparison of species
We study the genetic similarity of members of three different species ‐ in terms of the number
of genes they share. If a gene is present in an organism, we give it the value 1, 0 ‐ in the opposite
case. For the sake of simplicity only 10 genes are analysed.
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GENES gene1 gene2 gene3 gene4 gene5 gene6 gene7 gene8 gene9 gene10
specimen1 0 1 1 1 1 1 1 0 1 0
specimen2 0 0 1 1 1 1 1 0 1 0
specimen3 1 0 1 1 0 0 1 0 0 0

The calculated similarity matrix is as follows:

OBJECTS specimen1 specimen2 specimen3
specimen1 0 0.857143 0.375
specimen2 0.857143 0 0.428571
specimen3 0.375 0.428571 0

Specimens 1 and 2 are most similar and 1 and 3 are least similar: ‐ The Jaccard similarity of spe‐
cimen 1 and specimen 2 is 0.857143, i.e., just over 85% of the genes found in the two compared
species are shared by them.
‐ The Jaccard similarity of specimen1 and specimen 3 is 0.375, meaning that more than 37% of
the genes found in the two compared species are shared by them.
‐ The Jaccard similarity of specimen 2 and specimen 3 is 0.428571, i.e. almost 43% of the genes
found in the two compared species are common to them.

Similarity matrix options are used to indicate how the elements in the matrix are returned. By default,
all elements of the matrix are returned as they were computed according to the adopted metric. You
can change this by setting:

Elements of a matrix:

‐ minimum ‐ means that in each row of the matrix only the minimum value and the value on
the main diagonal will be displayed;

‐ maximum ‐ means that in each row of the matrix only the maximum value and the value on
the main diagonal will be displayed;

‐ k minimum ‐ means that each row of the matrix will display as many smallest values as
indicated by the user by entering the value of k and the value on the main diagonal;

‐ k maximum ‐ means that each row of the matrix will display as many largest values as
indicated by the user by entering k and the value on the main diagonal;

‐ elements below d ‐ means that in each row of the matrix those elements will be displayed
whose value is smaller than the user specified value d and the value on the main diagonal;

‐ elements above d ‐ means that each row of the matrix will display those elements whose
value is greater than the user‐specified value of d and the value on the main diagonal;

Neighborhood 0/1
Choosing the option Neighborhood 0/1, we replace the values inside the matrix with 1, and
empty spaces with 0. This way, we mark, for example, whether the objects are neighbors (1) or
not (0), that is, we determine the neighborhood matrix.

Row standardization
Row standardization means that each item of the matrix is divided by the sum of the matrix row.
The resulting values are between 0 and 1.
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Replace empty cells
Opcja Replacacing empty cells allows you to enter the value to be placed in the matrix in place
of any empty items.

The selected object ID allows you to name the rows and columns of the similarity matrix according to
the naming stored in the indicated variable.
EXAMPLE 4.4. (file: flatsSimilarities.pqs)
In real estate valuation procedures, for both substantive and legal reasons, the issue of similarity plays
an important role. For example, it is an essential prerequisite for grouping objects and assigning them
to an appropriate segment.

Let’s assume that a real estate agent is approached by a person looking for an apartment, who defi‐
nes those features that the apartment must have and those that have a big influence on the purchase
decision but are not decisive. The features that the property must have are:

• a residential property,

• located in district A,

• located in a low‐rise multi‐family housing area (up to 5 storeys),

• not renovated (average or deteriorated condition).

Data for these locations are summarized in a table, where 1 indicates that the locationmeets the search
conditions, 0 that it does not.

Those locations that do not meet the search conditions will be excluded from the analysis by deacti‐
vating the corresponding rows. Deactivate the rows that do not meet any of the search conditions via
menu Edit→Activate/Deactivate (filter)....

Remember to combine the deactivation conditions with the alternative (replace with ).
As a result, 11 locations were identified ( locations 10, 12, 17, 35, 88, 101, 105, 122, 130, 132, 135) that
fit this segment (meeting all 4 conditions).

Now we will consider those features that have a strong influence on the customer’s decision, but are
not decisive:

• Number of rooms = 3;

• The floor on which the apartment is located = 0;

• Age of the building in which the apartment is located = approx. 3 years;
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• Proximity of the A district to the city center (time it takes to get to the city center) = approx. 30
min;

• Proximity to public transport station = approx. 80 m.

Number of Apartment Age of the Proximity to the Proximity to the
rooms floor building city center public transport station

Wanted 3 0 3 30 80
Lokal 10 2 1 1 0 150
Lokal 12 1 2 1 0 200
Lokal 17 3 1 7 20 500
Lokal 35 2 0 6 5 100
Lokal 88 3 4 6 5 200
Lokal 101 4 2 10 0 10
Lokal 105 2 2 6 0 50
Lokal 122 1 0 6 5 100
Lokal 130 2 0 10 0 20
Lokal 132 3 5 6 30 400
Lokal 135 3 1 6 5 100

Note that the last feature, the distance of the public transportation station, is expressed by much larger
numbers than the other features of the compared locations. As a result, this feature will have a much
greater impact on the distance matrix than the other features. To prevent this from happening before
the analysis, normalize all the features by choosing a common range from 0 to 1 for them ‐ to do this,
use the Data→Normalization/Standardization... menu. In the normalization window, set ”Number of
rooms” as the input variable and an empty variable called ”Norm(Number of rooms)” as the output
variable; the normalization type is normalization min/max; the values of min and max are calculated
from the sample by selecting the Calculate from sample button ‐ the normalization result will be re‐
turned to the datasheet when the Ok button is clicked. The normalization is repeated for the following
variables ie: ”Floor”, ”Building Age”, ”Distance to Center” and ”Station Distance”.
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The normalized data is shown in the table below.

Norm(Number of Norm(Apartment Norm(Age of the Norm(Proximity to the Norm(Proximity to the
rooms) floor) building) city center) public transport station)

Poszukiwany 0,666666667 0 0,222222222 1 0,142857143
Lokal 10 0.333333333 0.2 0 0 0.285714286
Lokal 12 0 0.4 0 0 0.387755102
Lokal 17 0.666666667 0.2 0.666666667 0.666666667 1
Lokal 35 0.333333333 0 0.555555556 0.166666667 0.183673469
Lokal 88 0.666666667 0.8 0.555555556 0.166666667 0.387755102
Lokal 101 1 0.4 1 0 0
Lokal 105 0.333333333 0.4 0.555555556 0 0.081632653
Lokal 122 0 0 0.555555556 0.166666667 0.183673469
Lokal 130 0.333333333 0 1 0 0.020408163
Lokal 132 0.666666667 1 0.555555556 1 0.795918367
Lokal 135 0.666666667 0.2 0.555555556 0.166666667 0.183673469

Based on the normalized data,wewill determine the locations thatmost closelymatches the customer’s
request. To calculate the similarity we will use the Euclidean distance metric. The smaller the value,
the more similar the units are. The analysis can be performed assuming that each of the five features
mentioned by the client are equally important, but it is also possible to indicate those features that
should have greater influence on the result of the analysis. We will construct two Euclidean distance
matrices:

(1) The first matrix will contain the Euclidean distances calculated from the equivalently treated five
features;

(2) The second matrix will contain the Euclidean distances, in the construction of which the number
of rooms and the distance to the city center will be the most important.

To build the first matrix, in the similarity matrix window, we select 5 normalized variables labeled as
Norm, the Euclidean metric, and as Object Identifier the variable ” Location”.
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To build the second matrix, we use the same settings in the similarity matrix window as we did to
build the first matrix, but in addition, we select the Modification for : Euclidean button and in the
modification window, we enter larger values for ”Number of rooms” and ”Distance to city center”, e.g.,
equal to 10, and smaller values for the other features, e.g., equal to 1.

This will result in two matrices. In each of them, the first column refers to how similar it is to the
location the customer is looking for:

Euclidean Wanted ...
Wanted 0 ...

Location 10 1.10 ...
Location 12 1.31 ...
Location 17 1.04 ...
Location 35 0.96 ...
Location 88 1.23 ...
Location 101 1.38 ...
Location 105 1.18 ...
Location 122 1.12 ...
Location 130 1.32 ...
Location 132 1.24 ...
Location 135 0.92 ...

Euclidean with scales Wanted ...
Wanted 0 ...

Location 10 3.35 ...
Location 12 3.84 ...
Location 17 1.44 ...
Location 35 2.86 ...
Location 88 2.78 ...
Location 101 3.45 ...
Location 105 3.37 ...
Location 122 3.39 ...
Location 130 3.43 ...
Location 132 1.24 ...
Location 135 2.66 ...

According to the unmodified Euclidean distance, location 35 and location 135 shouldmost closelymatch
the client’s requirements.When theweights are taken into account, locations 17 and 132 are the closest
to the client’s requirements ‐ these are the locations that are primarily similar in terms of the number
of rooms required by the client (3) and the indicated distance to the center, with the other 3 features
having a smaller impact on the similarity score.
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4.2 WORKING WITH RESULTS SHEETS (REPORTS)

A report is a project element used to store the results of performed statistical analyses. It is included
in the project automatically and assigned to the active datasheet when the selected statistical proce‐
dure is completed. A report is not editable, except for its chart and title. You can edit the graph by
double‐clicking the mouse or through the right‐click context menu. Editing of the title is done in Pro-
ject Manager by adding or changing the description.
The most important report related operations can be done through the right‐click context menu in the
report window:

• Printing
Printing options are available through:
– context menu,
– menu File→Print...

• Exporting and sending reports
Reports created in PQStat can be exported to a file in *.rtf, *html and *.pdf formats. They can
also be exported to Word or Excel documents.
If you are exporting in the Project Manager, you can put the reports in separate files or in one
common file. To do this, select the chosen reports and then select the button and export to a
file or files of the chosen format. Exporting of individual reports can be done separately through
the context menu in the report window.

• Describing reports
Reports can be described in Project Manager or the report window by adding a title or a note.

• Editing charts
Editing the chart regarding its general and specific options is available through the context menu
in the report window.

• Copying reports
Using the system clipboard you can also transfer analysis results to other programs such asWord,
Excel.

• Deleting reports
Deleting a report is possible via:
– context menu Delete report (Shift+Del) on the report name in the Navigation tree,
– Project Manager.
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Note, however, that if map layers are attached to the report, deleting the report simultaneously
deletes all layers assigned to it.

Changing the report order is possible via the contextmenuof the rightmousebuttonMove up (Ctrl+Up)
lub Move down (Ctrl+Down) on the report name in the Navigation tree.
Adding information to the report name in the Navigation tree such as:

‐ time of generation,

‐ description,

‐ filter,

‐ grouping variable name,

‐ variable name.

is possible after selecting the corresponding option in the program settings window.

4.3 MENU AND LANGUAGE SETTINGS

4.3.1 LANGUAGE

Both the program interface and the reports can be displayed in Polish and English. Changing the selected
language does not require a restart of the program and can be done by selecting Język/Language from
the Edit menu. Reports opened after a language change will be automatically translated (except for the
procedure name, which is a description and is user editable).

4.3.2 MENU

Programmenus can be displayed as Classic or as Ribbon. You can switch the way the menu is displayed
by selecting the Edit menu and then the desired menu type.

Favorites
The Favorites menu provides quick access to frequently performed statistics and other operations. To
configure the menu for your own needs, use the Favorites search box ‐ you can search for any menu
item and then add it to the menu or remove it from it.
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5 ORGANIZATION OF WORK WITH THE PROGRAM

All statistical analysis procedures are available in the Statistics menu.

5.1 FORM OF DATA ORGANIZATION

The form of data organization depends on the statistical procedures you plan to perform.

Statistical analysis of the data may involve data collected in the form of a contingency table or raw data.
With this, it is possible to convert the data:

• from a contingency table to the raw form – via the Data menu→ Create raw data...,

• from raw form to contingency table – via the Data menu→ Create table...

1. Data in the form of raw records, is data organized in such a way that each row contains informa‐
tion about a different study object (patient, company, etc.)

EXAMPLE 5.1. Raw data (sex‐education.pqs file)

2. Contingency table, is a table showing the joint distribution of two variables. The inside of the
table are the observed values (natural numbers).
EXAMPLE 5.2. Contingency table (sex‐education.pqs file)
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5.2 DATASHEET WORKSPACE

Normally, when performing a statistical analysis, we have access to the entire workspace of the data‐
sheet. However, the user is free to limit this area by selecting a specific part of the datasheet. Such
selection can be done in several ways:

5.2.1 Organizing variables into sets

Variable sets are subsets of variables. Defining different sets is intended to simplify the selection of
variables in analysis windows by limiting the displayed list of variables. The selected variable set is di‐
splayed in the variable lists in each analysis window and in the datasheet.

By default, the default set of variables is used. The default set is the set consisting of all variables.
Defining sets of variables
To define your own variable sets, double‐click the name of the active set at the top of the datasheet
window.

In the Variable Set Management window, enter a name for the new set (possibly a description) and
select the variables in the list that are to make up the set. Confirm your selection with the Create Set
button. A variable can belong to multiple sets.

Editing Variable Sets

To edit a set, in theManage Variable Setswindow, I select a set from the list of sets and confirmwith the
Ok button. The variable selectionwindowwill show the selected variables in the set and the unselected
variables not belonging to the set.Once the variables are selected/unselected again accordingly, confirm
the selection with the Save Changes button.
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Activating a selected set of variables

Activating a set is done in the Variable Sets Management window or via the context menu at the top of
the datasheet on the name of the selected set.

5.2.2 Case activation/deactivation

Case activation/deactivation is a global option and overrides other area restrictions available in the
program. Cases (rows) indicated as deactivated are shaded in the datasheet and do not participate in
statistical analyses.
To activate or deactivate selected cases, select one of the following options:

• select the rows in the datasheet and chooseActivate/Deactivate from the contextmenu on their
name;

• select menu Edit →Activate/Deactivate (filter)...

EXAMPLE 5.3. (filter.pqs file)
Weare going to do a lot of statistical analyses, on the data from thefiltr.pqs file. These analyses are
not to apply to boys who are 16 years old or older. To do this, we specify the rows that the analysis
will not apply to: select the button and set a rule for the gender variable; again, select the
button and set a rule for the age variable. Remember: to perform this task correctly, all filter
conditions should be connected by conjunction (this is indicated by the ). Leave the Disable
option selected and confirm the analysis conditions set this way with OK

When narrowing the datasheet workspace, remember that filter rules can be connected by con‐
junction or alternative. To change the alternative and conjunction, use the buttons
More examples of how to use the filter can be found here.

To activate all cases, select the menu Edit →Activate all

5.2.3 Selecting an area

Selecting a consistent area causes the analysis we select next to be performed only on those rows inside
the selection and to have available only those columns inside the selection that contain data.
EXAMPLE 5.4. (filter.pqs file)
We want to determine the descriptive statistics for the height of girls between the ages of 10 and 15.
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So we sort the data by the gender column and by the age column, then select the consistent area
containing the column with the height of the girls between the ages of 10 and 15, and choose Stati-
stics→Descriptive analysis→Descriptive statistics from the menu.

In the Descriptive Statistics Test Options window, select the procedures you want to perform (e.g., se‐
lect the mean, standard deviation, minimum, and maximum) and the variable to analyse (the height
column), and confirm your selection with the OK button.

Narrowing the datasheet workspace by selecting a consistent piece of data causes a message to
appear in the analysis window:
Data reduced by selection

5.2.4 Saved Selection

If selected ranges are assigned to the datasheet, they are highlighted by a border. These can be used
for those analyses that have the option to enter data directly in the analysis window. Then, using the
fill from saved selection button, you can paste the data that is in the selected range.

Copyright ©2010‐2023 PQStat Software – All rights reserved 51



5 ORGANIZATION OF WORK WITH THE PROGRAM

EXAMPLE 5.5. (layers.pqs file)
We want to determine statistics related to Odds Ratio (OR) analysis for several strata. We will use the
data stored as 10 tables – they are highlighted (framed). From the Advanced statistics menu, select
Stratified analysis → Mantel-Haenszel OR/RR. In the test options window, we select Contingency
table and then set the number of stratas to 10. Each resulting layer can now be filled from the saved
selection. When we have filled in all the tables we perform the analysis by selecting the OK button.
Note
To assign another selection to the datasheet select Save Selection (Ctrl+T) from the Edit menu, and
to remove assigned selections select Delete selections.

5.2.5 Data filter

Data Filter is an option available when any statistical analysis is selected. Setting it reduces the number
of rows involved in that analysis. Either a basic or a multiple filter can be set.

• Basic filter allows you to select one particular subgroup. The selection can be made in two ways:

– Automaticmethod – this way we can apply one condition to the collected data using the
button, or multiple conditions by pressing again. The conditions will be connected by an
alternative or conjunction depending onwhether we choose the or button. Conditions
are removed using the button.

EXAMPLE 5.6. Automatic basic filter (filter.pqs file)
We want to determine the descriptive statistics for the height of girls between the ages of
10 and 15. From the menu, we select Statisticsto Descriptive analysisto Descriptive stati-
stics. In the descriptive statistics test options window, we select the procedures we want
to perform (e.g., select the mean, standard deviation, minimum and maximum) and the va‐
riable to be analysed (the column with height). We set the filter by adding rules with the

button. First we set the rule for variable gender , as condition we choose the equals sign
and as value we choose the letter g meaning girls. Next, we add another condition and set
a filter for the age variable, we choose >= as the condition and enter 10 as the value. In a
similar way, we add the age condition <=15. Remember: to perform this task correctly, all
filter conditions should be connected by conjunction (this is indicated by the ). Confirm
the analysis conditions set in this way with the OK button.

Copyright ©2010‐2023 PQStat Software – All rights reserved 52



5 ORGANIZATION OF WORK WITH THE PROGRAM

– Advancedmethod – this way we can write any rule, i.e. both simple andmore complex. We
start the advanced way by switching the button to and then selecting . This brings
up a window inside which we can build the filter formula.

When setting up an advanced filter, we use variable numbers preceded by v. You can view
the variable numbers and their contents using the Preview of varialbes (Codes/Labels)
button.

We can use the following logic functions:
and ‐ conjunction operator ‐ checks whether all the conditions it combines are true,
or ‐ alternative operator ‐ checks if at least one of the given conditions is true,
xor ‐ disjunctive alternative operator ‐ checks if exactly one of the given conditions is true,
not ‐ negation operator,
empty(v1) – function checking if there are empty cells,
text(v1) – function checking if there is text in the cells,
numer(v1) – function checking if there is a number in the cells.
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The finished filter can be used by selecting the Apply button, or saved for later by selecting
the button. Saved filters can be used by uploading them to the formula window via the

button.
EXAMPLE 5.7. Basic advanced filter (filter.pqs file)
We want to determine the descriptive statistics for the height of boys who are taller than
130 cm or older than 9 years old. From the menu, we select Statistics to Descriptive ana-
lysis to Descriptive statistics. In the Descriptive Statistics test options window, select the
procedures you want to perform (e.g., select the mean, standard deviation, minimum, and
maximum) and the variable to analyse (the height column). Set the filter by entering the
formula (v3>130 or v4>9) and v2=’m’. Then select Apply and perform the analysis.

• Multiple filter – imposes one condition on the collected data by dividing it into several subgroups.
The selected analysis is performed multiple times, separately for each subgroup.
EXAMPLE 5.8. Multiple filter (filter.pqs file)
We want to determine the descriptive statistics for girls’ height and separately for boys’ height.
From the menu, we select Statistics to Descriptive analysis to Descriptive statistics. In the De‐
scriptive Statistics test options window, select the procedures you want to perform (e.g., select
the mean, standard deviation, minimum, and maximum) and the variable to analyse (the height
column).We set up themultiple filter by adding a rulewith the button and selecting theGender
variable. Confirm the selected analysis options with the OK button. This will result in 2 reports:
a separate one for boys and a separate one for girls.

.
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5.3 MULTIPLE ANALYSES

To streamline performing the same analysis multiple times, you can:

1. Use the option to memorize the current and previous analysis. PQStat automatically remembers
the last analysis performed and the options set in its window. The ability to quickly return to it is
provided by the button (ribbon menu ‐> ) located on the toolbar.

2. Use the option to memorize the analysis based on the report. PQStat automatically saves the
options set in the analysis window together with the analysis report. A button located in the
context menu of the right mouse button on a report in Navigation tree allows quick return to it.

3. Select multiple variables in the analysis window so that the analysis is run multiple times. Results
for each analysis performed will be returned in subsequent reports.

4. Use the multiple filter to run the analysis separately for each subset of the data. Results for each
analysis performed will be returned in subsequent reports.

5.4 ORGANIZING REPORTS INTO SETS

When you have a large number of reports, it is convenient to group them into sets. Prepared sets make
it easier to navigate through the results and speed up the transfer of results to other programs such as
Excel or Word.

Creating sets

Through the context menu Add empty in the Navigation Tree on a datasheet or existing set.

Placing Reports into Sets

Reports can be placed in a set

• at the time they are created ‐ from the analysis window ‐ to do this, in the analysis window, select
the button and choose the set to which the analysis report is to be created, or before the
analysis itself, select this set in the Navigation tree;

• after the analysis has been performed ‐ via the drag‐and‐drop option or the context menu on the
name of the report(s) in the Navigation Tree, or via the Project Manager.

Editing sets

Via the context menu in the Navigation Tree on the datasheet or an existing set Edit Package..
Deleting sets

Via the context menu in the Navigation Tree on the set name Delete package (Shift+Del).

5.5 INFORMATION RETURNED TO THE REPORT

In addition to the basic settings for the statistical analysis performed in the test window, you have the
option to:

• Include the analysed data in the report.
The data analysed depending on the test being performed can be returned to the report:

– in the form of raw records,
– in the form of contingency tables.
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• Include a graph in the report.
To make sure the appropriate chart is included in the report, in the window of the selected stati‐
stical analysis, select Add graph.

• Combine results from multiple analyses into a single report.
By selecting multiple variables or by applying multiple data filters, multiple analyses of the same
type can be performed simultaneously. Tomake viewing the results easier, all analyses performed
in this way can be returned to a single report. To do this, in the analysis window, select Combine
in one report.

5.6 IDENTIFICATION OF STATISTICALLY SIGNIFICANT RESULTS

In the report, red is used to denote the p‐value of the executed statistical test that is lower than the
user‐set significance level. By default, a significance level ofα = 0.05 is selected for all tests. This setting
can be changed permanently in the settings window or temporarily (until the program is closed) in the
selected test window.
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6 PLOTS

The PQStat program offers column plots, error plots, box‐whisker plots, point plots, and line‐point plots.

The window with the plots settings is opened via the plots menu.

Changing the basic plot parameters is possible directly in the plot window. If, however:

‐ you want to change general plot parameters such as titles, backgrounds, axes, grid lines and the
legend – select the Plot General Options tab.;

‐ you want to change the appearance of the drawn object itself, e.g. shape, style, colors – select
the Plot Detailed Options tab.;

‐ you want to draw additional elements on the plot, e.g., a line – select the Other tab..

Plots showing the results of statistical analyses are available in the window of the selected statistical
analysis under the option Include plot.
The plot is returned to the report, where it can be:

‐ saved – Save the plot as... in the context menu;

‐ printed – Print plot in the context menu;

‐ copied – Copy plot in the context menu;

‐ edited – this applies to Plot General Options i Plot Detailed Options. To edit a chart, simply
double‐click on the plot, or select Edit Plot from the context menu. In the plot editing window it
is also possible to save the plot in high resolution.

6.1 PLOT GALLERY

Depending on the type of analysis we can choose from:

6.1.1 Column plots
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6.1.2 Estimator error plots
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6.1.3 Box‐whiskers plots
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6.1.4 Scatter plots
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6.1.5 Line plots
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6.2 LOCAL LINEAR SMOOTHING TECHNIQUES

6.2.1 LOWESS

LOWESS (locally weighted scatterplot smoothing) also known as LOESS (locally estimated scatterplot
smoothing) is one of many ”modern” modeling methods based on the least squares method. LOESS
combines the simplicity of linear regressionwith the flexibility of nonlinear regression. Locally weighted
regression (LOESS) was independently introduced in several different fields in the late 19th and early
20th centuries (Henderson, 1916[76]; Schiaparelli, 1866[145]).In the statistical literature, the method
was introduced independently from different perspectives in the late 1970s by Cleveland, 1979[37],
among others. The method used in the PQstat program is based on this particular work. The basic
principle is that a smooth function can be well approximated by a low‐degree polynomial (the program
uses a linear function i.e., a first‐degree polynomial) in the neighborhood of any point x.

Procedure algorithm:

1. For each point in the dataset, we build a window containing adjacent elements. The number of
elements in the window is determined by the smoothing parameter q. The higher its value, the
smoother the function will be. If this parameter is e.g. 0.2, then about 20% of the data will be
in the window and they will be used to build the polynomial (here the unicomial, i.e. the linear
function).
Due to the need to maintain the symmetry of the window, i.e., the data in the window should
be above and below the point for which we are building the model, the number of elements in
the window should be odd. Therefore, the number of elements obtained from the parameter q
is rounded up to the first odd number. This produces a window containing an element x0 and the
corresponding number k(x0) of elements before and after that element in an ordered collection
of data.

k(x0) =
roundUpNpar(q ∗ n)− 1

2

For example, if the window is to contain 7 elements, it will contain the element x0 and the three
preceding and three following elements of the sample. The window determined for the first and
last sample elements is of the same size but the test element is not symmetrically placed in it i.e.
in the middle.

2. At each point in the dataset, a low‐degree polynomial (here a linear function) is fitted to a subset
of the data located in the window. The fit is performed using a weighted least squares method,
which gives more weight to points near the point whose response is estimated and less weight to
points further away. In this way, a different polynomial function formula (here a linear function)
is assigned to each point. The weights used in the weighted least squares method can be set
quite flexibly, but points distant from the set must have less weight than points nearby. Here the
weights proposed by Cleveland, the so‐called tricube, are used

w = (1− d3)3,

where the distance d from point x0 was 0 ‐for points outside the designated window and was
given as the actual distance betweenpoints, but normalized to the interval [0,1]‐for points located
within the window, so that the maximum distances in all windows were the same.

3. At each point, the value of the function ŷi is computed based on the polynomial formula (here
a linear function) assigned to it. Based on the points xi and the points hatyi estimated by this
method, a smoothed function is drawn to fit the data.
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6.2.2 Kernel smoothing

Theestimationof the regression functionby kernel smoothing is sometimes called theNadaraya‐Watson
estimation (Nadaraya, 1964[121];Watson, 1964[165]). The kernel estimate is a weighted average of the
observations within the smoothing window:

ŷi =

∑2
i=1Kh(ti)yi∑2
i=1Kh(ti)

,

whereKh(ti) is the kernel function described in section Kernel estimation
The smoothing parameter h (bandwidth) has a decisive influence on the obtained estimator. The higher
the value of the smoothing parameter, the greater the degree of smoothing. It is possible to choose any
smoothing parameter by setting a user value. It is also possible to select it automatically by SNR, SROT
or OS method. Kernel function has much less influence on the obtained result. We can choose kernels:
Gaussian, uniform function (rectangle), triangular, Epanechnikov, quartic or biweight (fourth degree). A
description of the different magnitudes of the smoothing parameter and kernel function can be found
in the aforementioned chapter.

The window with the settings of the point plot options with the fitted function by the LOWESS method
or by kernel smoothing can be found in various analyses. You can also make this graph via the menu
Plots→Scatter Plot.

EXAMPLE (20.2) cont. (LDL weeks.pqs file)
The effectiveness of a new therapy designed to lower cholesterol levels in the LDL fraction was tested.
88 people at different stages of the treatment were examined. We will test whether LDL cholesterol
levels decrease and stabilize as the treatment is administered over time (time in weeks).

Results are presented by initially fitting a straight line indicating the direction of the relations under
study.
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However, this way of presenting the data does not fully capture the relations taking place. From the
arrangement of the points, it can be seen that the relations are initially decreasing and begins to stabilize
after 150 weeks. The relations are presented again using the LOWESS method and Gaussian kernel
smoothing.
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Bothmethods i.e., both LOWESS and kernel smoothing gave similar results and described the datamuch
better, indicating an initial decline in LDL followed by stabilization near 70 mg/dl.

6.3 KERNEL ESTIMATION

6.3.1 One‐dimensional kernel estimator

The one‐dimensional kernel density estimator allows you to approximate the density of a data distribu‐
tion by creating a smoothed density curve in a non‐parametric way. It provides a better density estimate
than is given by a traditional histogram, which columns form a staircase function.

4 6 8 10 12 14 16

h=1
Gauss

0 5 10 15

h=2
Gauss

The kernel estimator is defined based on a properly smoothed kernelKh(ti). The smoothing parameter
h (bandwidth) has a decisive influence on the obtained estimator. The higher the value of the smoothing
parameter, the greater the degree of smoothing.

For each point x in the range defined by the data, the density is determined, that is, the value of the
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kernel estimator at that point is given. This estimator is created by summing the values of the kernel
functionKh(ti) at that point:

f̂K(x) =
1

n

n∑
i=1

Kh(ti)

If we give the individual cases weights wi, then we can construct a weighted kernel density estimator
defined by the formula:

f̂K(x) =
1∑n

i=1wi

n∑
i=1

wiKh(ti)

Smoothing factors

User ‐ gives you the ability to select any user‐specified smoothing factor, but the factor must be
positive.

User scaled ‐ is set so that the kernel function can be changed while remaining at the smoothing
that was previously chosen for the Gauss kernel. In practice, by choosing a function other
than Gauss, the smoothing factor is scaled (Scott, D. W. 1992[146]) so that the smoothing
remains at a similar level as it was for the Gauss function. This offers the convenience of
switching between different kernels without considering scaling the smoothing parameter.
Scaling conversions are made based on the standard deviation:

h2 =
σ(Kh1)

σ(Kh2)
h1

SNR ‐ a smoothing factor constructed from Silverman’s method (Silverman B. W. 1986 [151] pp.
45 and 47) and Jones’ correction (Jones M. C. et al 1996 [86]) using the standard deviation
from the sample rather than the population ‐ as proposed by Silverman:

hSNR = 1.06sd · n1/5

For a non‐Gaussian kernel, the smoothing factor is subject to scaling (ScottD.W., 1992[146])
SROT ‐ smoothing factor built on the basis of Silverman’s method (Silverman B. W. 1986 [151]

pp. 48) with Jones’ correction (Jones M. C. i inni 1996[86]):

hSROT = 0.9min
(
sd,

IQR

1.34

)
n1/5

For a non‐Gaussian kernel, the smoothing factor is subject to scaling (ScottD.W., 1992[146])
OS ‐ smoothing factor built on the basis of Terrell and Scott’s method (Terrell G. R. i Scott D. W.

1985[160], Terrell G. R. 1990[159] pp. 470):

hOS = 1.144sd · n1/5

For a non‐Gaussian kernel, the smoothing factor is subject to scaling (ScottD.W., 1992[146])

Kernel function
The kernel function affects the obtained value of the kernel estimator to a lesser extent than the
smoothing parameter. The kernel is a probability density function built around each data point xi.
Typically, it is a symmetric function reaching a maximum at a point xi, and decreasing its values
as onemoves away (increasing distance di) from that point. The distance from the analysed point
is modified by the smoothing parameter h according to the formula: ti = di

h .

Depending on your needs, the kernel function can take the form of a function such as:
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Gauss

Kh(ti) =
1

h
√
2π

exp(− t2i
2
)

uniform (rectanglular)

Kh(ti) =

{ 0,5
h if ti < 1
0 if ti ≥ 1

triangular

Kh(ti) =

{
1−ti
h if ti < 1

0 if ti ≥ 1

Epanechnikov

Kh(ti) =

{
3
4
1−t2i
h if ti < 1

0 if ti ≥ 1

quartic or biweight (fourth degree)

Kh(ti) =

{
15
16

(1−t2i )
2

h ifi ti < 1
0 if ti ≥ 1

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 –Gauss
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–Epanechnikov

–quartic/biweight

EXAMPLE 6.1. (BMI.pqs file)
The values of theweight‐growth index BMI1 for a certain group of obese subjects were calculated. Their
distribution was presented using a histogram with the values divided every 1 BMI unit. The data were
also visualized using a kernel density estimator by selecting a Gaussian kernel function and setting the
smoothing factors to respectively: 0.5, 1, 2.
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The smoothing factors of the kernel estimator suggested by the SROT, SNR, and OS methods reach
magnitudes between 1.4 and 2.

6.4 BLAND‐ALTMAN PLOT

As noted by Bland and Altman (1986[21], 1999[8]) in clinical medicine, measurements made on the
living body are constantly changing and their true value is unknown (e.g., blood pressure), necessita‐
ting constant refinement and development of new and better tools to measure them. Usually, when a
new method is created, its results are compared with another recognized method, the so‐called gold
standard. For this purpose, the compatibility of the new method with the previously used method is
examined. Of course, the new method cannot be expected to give exactly the same result as the me‐
thod used so far, but the researcher is interested to see how the results differ. To replace an old method
with a new one, the difference between the results of the two methods should be small enough not to
pose a problem in clinical interpretation. For example, in a blood pressure measurement, a difference
of 20mmHg will be so large that it cannot be considered an acceptable error because it may change
the treatment decision. Statistical methods will not answer the question of how large a difference in
methods is permissible for themethods to be considered compatible, but appropriate graphical illustra‐
tion of the differences obtained and the possible limits of variability will help the researcher in making
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a decision.

A Bland‐Altman plot is a point plot, where:

X axis ‐ average of measurements for compared methods;

Y axis ‐ difference between measurements for compared methods;

Mean difference‐ If the results obtained by the newmethod are consistently greater / less than the old
method, then there is a shift, which is called bias, i.e. the line representing the average difference
is not at 0, but is shifted significantly up or down from this level.

95% limits of agreement‐ if the differences have a normal distribution, 95% of the differences will be
in the range (Mean difference± 1.96SD), where SD, is the standard deviation of the differences.
Note1!
The compliance interval defined above is not the same as the limits of agreement.
Note2!
There is no requirement that the data have a normal distribution, only that the distribution of
differences does not deviate significantly from the normal distribution. We can check if the diffe‐
rences have a normal distribution by using tests that test for conformity to a normal distribution
or a visual interpretation of the normal distribution.

Precision of the limits of agreement‐ is the interval for the limits, and thus the range of accuracy with
which we determine the limits based on a representative sample. The larger the sample and the
smaller the variance of the differences, the higher the precision obtained.

EXAMPLE 6.2. (preassure guage.pqs file)
The example is taken from the work of Bland and Altman (1999[8]). In this study, a semi‐automatic
blood pressure monitor (S) was compared with the previously traditionally used classic blood pressure
monitor (J). For this purpose, systolic blood pressure was measured for 85 patients using both blood
pressure monitors. An excerpt of the data is shown below.

A Bland‐Altman plot of the collected data indicates that the semi‐automatic (S) monitor yields higher
results than the classic monitor by an average of 16.3mmHG (the line for the mean difference is 16.3
lower than the absolute agreement shown by the level 0 line). The span of the agreement interval is as
high as 76.9mmHG.

Copyright ©2010‐2023 PQStat Software – All rights reserved 76



6 PLOTS

For people with hypertension (systolic pressure ≥ 140), the changes in pressure can be quite large,
so the tested measurement differences can be distorted by actual pressure spikes, so we extracted a
subgroup of people with normal pressure and hypertension based on the average pressure value. For
each subgroup, we can plot separately by setting a multiple filter for the variable group in the test
window. The agreement of the methods for people with normal blood pressure will then be much
improved (narrower agreement interval).
Bland‐Altman plot for repeated measurements

Repeatability of measurements is an important but often overlooked aspect in method agreement te‐
sting. A method with higher repeatability is more precise. If the measurements of one of the compared
methods are not repeatable (i.e. repeated measurements made on the same objects give rather dif‐
ferent results), its agreement with the other method will be low. If the repeatability of both methods
is poor, their agreement will be even lower. Consequently, when the repeatability of the old method
is poor, the agreement of the new method may be poor, even if the new method has high repeatabi‐
lity. Therefore, although in real research a single measurement is taken for each subject (patient), in
research aimed at estimating agreement it is recommended to take measurements several times. This
approach provides an opportunity to take into account the reproducibility of the results obtained in
studies on agreement of methods.
Note!
By repeated measurements we mean measurements performed independently on the same objects
under the same conditions.

EXAMPLE (6.2) continued (preassure guage.pqs file)
In the comparison of the agreement between the measurements taken by the compared blood pressu‐
re monitors, the repeatability of both methods was also taken into account. Therefore, the study was
repeated two more times and finally 3 measurements were obtained for each patient using a semi‐
automatic blood pressure monitor and 3 measurements were obtained using a classic blood pressure
monitor. A portion of the data is presented below.
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This time, the agreement intervals are slightly wider than when using a single measurement for each
method ‐ the span of the agreement interval is as high as 82.11mmHG. This is because we take into
account the degree of repeatability of themeasurements. Unfortunately, taking several repetitions into
account increases the width of the interval, but the presented results better represent reality. Without
taking into account the repeatability, we assume that the repeatability is 100 percent, which is almost
impossible under real conditions.

As before, it is recommended to repeat the analysis separately for those with hypertension and those
with normal blood pressure.

6.5 Correlation matrix

When we are interested in correlation between many variables, a convenient way to visualize it is to
present correlation coefficients in the form of a chart. Depending on the scale on which the data was
collected, in PQStat we have a choice of these coefficients:

• r‐Pearson (interval scale)

• r‐Spearman (ordinal scale or stronger)

• tau‐Kendall (ordinal scale or stronger)

• C‐Pearson (nominal scale or stronger)
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• V‐Cramer (nominal scale or stronger)

• Phi (nominal scale or stronger)

• Q‐Yule (nominal scale or stronger)

As a result of the analysis two matrices are created, i.e. a matrix of correlation coefficients and a ma‐
trix of p‐values for the test determining the statistical significance of a given coefficient (for r‐Pearson,
r‐Spearman and tau‐Kendall coefficients these were the tests dedicated for them, for nominal scale in
was the chi‐square test ). In the matrix of correlation coefficients , at the intersection of two variables,
the coefficient of their correlation is given, and its p‐value is in the corresponding place in the other
matrix. The cell color in the coefficient matrix is graded from blue (negative coefficients) to red (positi‐
ve coefficients).

The analysis determines the correlation for each pair of variables, so missing data are omitted in pairs.
If we want to perform the analysis by omitting missing data in other variables (i.e., not those included
in the pair), then we should do so by using advanced filter.

The window with correlation matrix settings is opened via Statistics→Calculators→Correlation matri-
ces

Thewindowwith settings for thematrix plot for the correlationmatrix is opened viaPlots→Matrix plot

Copyright ©2010‐2023 PQStat Software – All rights reserved 79



6 PLOTS

EXAMPLE 6.3. (file markers others.pqs)
An excerpt from a larger study on cancer is given. The data taken represents a group of 100 people.
The study measured, among other things, values of tumor markers (interval scale), determined BMI
categories for patients and asked for opinions on the possible influence of their place of living and diet
on health (ordinal scale), as well as recorded patients’ answers on questions about smoking, alcohol
consumption and type of work (nominal scale).
Conducting multivariate analyses often implies the need to first check for intercorrelations of variables.
For the purposes of further analysis:
(1) We will examine the correlation within each of these groups.
(2) We will test the correlation between all variables.

(1)
For the interval scale, assuming normality of distribution, correlation can be tested by Pearson’s linear
correlation coefficient. The strongest correlation is for marker A and marker C (r=0.8995, p<0.0001) the
weakest and not statistically significant is for marker B and marker C (r=0.0753, p=0.4567).
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The described correlations can be observed in scatter plots (the X‐axis of these plots is the variable
described in columns, the Y‐axis in rows), and the distributions of individual variables in column plots.

For the ordinal scale, we will check the correlation using the Spearman correlation coefficient. The only
significant correlation is between diet and place of living (r=0.2634, p=0.0081).
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The correlations described can be observed in cumulative column plots (the X‐axis of these plots is the
variable described in the columns, the legend is the variable described in the rows), and the distributions
of the individual variables in the column plots located on the main diagonal.

For the nominal scale, we check the correlation using the C‐Pearson coefficient adjusted for chart size.
We did not obtain statistically significant correlations.
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Correlations, if any, can be observed in cumulative column plots (the X‐axis of these plots is the variable
described in the columns, the legend is the variable described in the rows), and the distributions of
individual variables can be observed in column plots located on the main diagonal.

(2) The easiest way to determine correlations between variablesmeasured on different scales is to bring
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them to the same scale. To do this, we will record interval data by dividing it into two categories ”low”
and ”high” e.g. by quantiles. We can do this automatically in the transformation window via menu
Data→Transformation.

The ordinal data will also be divided into two categories, but the division will be made by selecting
Variable Properties (Codes/Labels) in the analysis window via the context menu (right mouse button)
and entering only the two valid values and the two labels.
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As a result, we will only show the correlation matrix (without a graph), since a graph for so many varia‐
bles will not be clear enough.
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7 TEST POWER AND SAMPLE SIZE

There are several ways we can approach determining the sample size. One possibility is to
estimate how large the sample should be to reflect the population. Another possibility is to estimate
the sample size for the situation of applying specific statistical tests. Then, in addition to the necessary
sample size, wemay be interested in the power of those tests. The first, and seemingly easier approach,
is presented in subsection Sample size determination, the second in subsection Power and size for a test.

7.1 Sample size determination

For the margin of error of the proportion and the mean
Since it is usually neither practical nor possible to study the entire population, a subset of it ‐ the sample
‐ is chosen. The sample is of course correspondingly smaller than the population, but it should reflect it
well. One of the key aspects in planning a study, besides the randomness of the sample, is the assump‐
tion of its size. The size should be chosen so that the inference about the population is true.

If we are interested in ensuring that the proportions of certain characteristics, or their mean values,
calculated for a sample reflect the proportions or mean values in the population with as little bias as
possible, we can estimate the necessary sample size accordingly.

Sample size for estimating population proportions
Assuming the possibility of an error in estimating the size of E, we can determine the necessary
sample size n0 ‐ for an unknown population size or nFPC ‐ for a known population size.

n0 =
Z2p(1− p)

E2

where:
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p – the expected proportion in the population specified by the user, whereas ‐ if this
quantity is not known, the estimated necessary size will be increased to be sufficient
for each possible proportion, so the value p = 0.5 will be used.

When we know the population size (and in particular ‐ when the size is relatively small with re‐
spect to n0, i.e. when n0/N > 5%) we should use the so‐called finite population correction
(FPC) (Lenth (2001)[98], Armitage and Colton (2009)[12]) given by the formula:

nFPC =
n0N

n0 + (N − 1)

Sample size for estimating the population mean
Assuming the possibility of an error in estimating the size of E, we can determine the necessary
sample size n0 ‐ for an unknown population size or nFPC ‐ for a known population size.

n0 =
Z2σ2

E2

where:

σ – population standard deviation ‐ known from previous studies.

When we know the population size (and in particular ‐ when the size is relatively small with re‐
spect to n0, i.e. when n0/N > 5%) we should use the so‐called finite population correction
(FPC) given by the formula:

nFPC =
n0N

n0 + (N − 1)

Thewindowwith the Sample size determination settings is opened viamenuAdvanced statistics→test
power and sample size→Sample size determination
EXAMPLE 7.1. Estimation of proportions

Population: Eligible to vote for President of Poland.

We are interested in endorsements of individual candidates.

How many people should be selected so that the resulting percentage has bias of at most 2%?

With a sample size of at least 2401 elements,wewill have 95%confidence that the bias in support for the
selected presidential candidate does not exceed 2%. This means that in 95% of experiments involving
drawing a random 2401 element sample from the population, the bias of the support estimate for a
given candidate will not exceed 2%, but in 5% of such experiments it may be greater than 2%.
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When choosing the size of the acceptable bias, one should pay attention to the fact whether there is
not a situation in which candidates with small support (on the limit of the assumed estimation bias)
take part in the election. If this is the case, it is worth reducing the value of the estimated bias ‐ the
consequence of reducing the bias will then be an increase in the necessary sample size.
EXAMPLE 7.2. Estimating the mean value

Population: Individuals with hypertension in Poland in 2005‐2010, aged 20‐40 years.

We are interested in the mean body weight of these individuals.

How many individuals should be selected so that the mean body weight has bias of at most 3kg? We
know that the population standard deviation of the body weight of these individuals is 18kg.

To be 95% sure that there is a population mean within the bias (∆kg) built around the mean of our
sample we need to select at least 139 individuals.

7.2 Power and sample size for test

The windowwith the test power settings and the required sample size for this test is openedwithmenu
Advanced Statistics→Test power and sample size→Power and sample size for test.
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Power analysis is directly related to testing hypotheses, and therefore to specific statistical tests. Tests
vary in their power. Some tests are stronger, others weaker. Because of this fact, if there are several tests
available to solve a given statistical problem, it is better to choose the test which is more powerful. Such
a test is stronger, so it will more easily reject the null hypothesis, and therefore it will be easier for us
to prove the alternative hypothesis ‐ which is, after all, the goal.

Power of statistical test is the ability of a test to detect differences, relations, correlations and any kind
of dependencies which are described in alternative hypothesis. In technical language, the power of a
test is called the probability of accepting an alternative hypothesis when it is in fact true.

The power of the test can be checked a priori, i.e. before collecting the data for the actual test, but
often it is the reviewers of the papers or ourselves already during the analyses, i.e. a’posteriori, i.e.
after collecting the actual sample, who are interested in the power of the analyses we perform. If the
power of the test is low, then the results obtained may be ambiguous, if it is high ‐ we may expect that
in the future it will be difficult for other researchers to obtain different results, i.e. to undermine our
results. For example, when we show using a test with a power of 80% that two groups of students are
statistically significantly different from each other in terms of the number of correctly solved tasks, this
means that when other researchers repeat this experiment under the same conditions as we do, they
will also prove the alternative hypothesis in 80% of the random samples of the same size as ours, using
the same test and assuming the same significance level.
Power of the test is determined by the formula:

Power = 1− β,

where:
β ‐ Type II error, which is the probability of accepting the null hypothesis when it is false.

The power of a test is directly related to the sample size n ‐ the larger the sample, the greater the
power, i.e., the more students we collect to run the test, the easier it will be to argue that the detected
differences between groups are not due to chance, but actually occur between populations. Hence,
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using the same approach, you may be interested in determining the required sample size for a given
statistical test while keeping its power at a given level.

In PQStat, we can calculate the power of a test by specifying the sample size, or we can calculate the
sample size by specifying the test powerwewant to achieve. Unfortunately, both test power and sample
size, in addition to being related to each other, also depend on other additional information about the
collected sample that needs to be determined, these are:

• The effect size ES that we consider important. The larger the effect, the greater the power and
the smaller the sample needed to obtain this power. For example, obtaining a difference of five
correctly solved tasks will be easier to argue that the groups do in fact differ (we will have a more
powerful argument) than if we tried to argue for a real advantage of one of the student groups
by stating that they differ by only one correctly solved task.
To determine power or the required size, usually the effect under study must be standardized,
so in many situations it is necessary to provide additional information, e.g., standard deviation,
correlation coefficient, and other coefficients to standardize such an effect.

• The level of statistical significanceα (error of type I) ‐ the greater the significance level, the greater
the power. Unfortunately, the significance level is the part of the analysis over whichwe have only
apparent influence, that is, there are few situations when it can be changed, and if a change is
allowed, it involves decreasing α (see Multicomparison). Normally we assume that α = 0.05.

• Direction of hypothesis i.e. two‐sided hypothesis (equality in null hypothesis) or one‐sided hypo‐
thesis (< or > signs in null hypothesis).The one‐sided hypothesis gives more power but is much
less often chosen because in real life situations when applying a statistical test we rarely assume
that, for example, students from the first population have no chance of beating students from
the second population, but often we give equal chances to both groups at the start.

Before you can determine the power of a test, you should know how to use it, understand its hypothe‐
ses, and be able to determine the effect size, and if you have data from a study such as a pilot study,
you should also perform that test.

7.2.1 Single‐sample t‐test

Before determining the power or the required sample size of the Single‐sample t‐test, it is worthwhile
to familiarize yourself with the rules of its application.

To determine the power of the test and the required sample size, we need:

Power of the test Group size
Group size Power of the test

Hypothetical mean
Group mean

Group standard deviation
α significance level

The set effect size, in this case, is the size of the difference between the set mean of the study popula‐
tion and the hypothetical mean value.

The power of the test and the required sample size are calculated based on the noncentral t‐test distri‐
bution.
EXAMPLE 7.3. Wewant to test (at the 0.05 significance level) whether thewait time for a certain delivery
company to deliver a package is on average days (i.e., 72 hours).
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• Testing a priori ‐ We plan to conduct a study, but have not collected data yet.

We set the test power we want to obtain at 80%.
The standard deviation that we provide should reflect the difference in delivery time that we
expect to obtain in the planned study ‐ we assume (based on the experience of the employees of
this company) that it will be 1 day (24 hours).

a) What will be the required sample size when we assume that the effect size at which we would
like to obtain statistical significance is 12 hours (0.5 days)?

b) What will be the required sample size when we assume that the effect size at which we would
like to obtain statistical significance is 6 hours (0.25 days)?

Answer a) We know that the range from 2.5 to 3.5 days is within acceptable limits. Therefore, we
use 3 days as the hypothetical mean and 2.5 days (or 3.5 days) as the test group mean.

The resulting required sample size to prove that an effect exceeding 12 hours is statistically signi‐
ficant is 34 deliveries.

Answer b) We know that the range from 2.75 to 3.25 days is within acceptable error. Therefore,
we use 3 days as the hypothetical mean and 2.75 days (or 3.25 days) as the test group mean.

The resulting required count to prove that an effect exceeding 6 hours is statistically significant is
128 deliveries.

• Testing a posteriori ‐ We collected data for the study ‐ our sample includes 22 deliveries (data in
file kurier.pqs).

Based on the collected data, we determine the mean number of days to wait for delivery and the
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standard deviation of the group. In this case mean=3.727273, deviation=1.906925.

a) What is the power of the analysis performed?

b) What would the power look like if we increased the sample size to 100 elements while leaving
the other assumptions unchanged?

Answer a) The power of the analysis performed is only 0.400302.

From this we know that many random samples with a sample size of 22 (about 60% of such
samples) will not lead to confirmation of the alternative hypothesis.

Answer b) The power of our analysis will increase to 0.965364 when its sample size increases to
100 elements and the assumptions of the analysis do not change.

We can see how the power of the analysis will change with the sample size changing and the
other assumptions unchanged in the chart.
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7.2.2 T‐test for dependent groups

Before determining the power or the required sample size of the t‐test for dependent groups, it is
worthwhile to familiarize yourself with the rules of its application.

To determine the power of the test and the required sample size, we need:

Power of the test Group size
Group size Power of the test

Group mean 1
Group mean 2

Standard deviation of the difference
(or deviations of both groups

and Pearson correlation coefficient)
Significance level α

The set effect size, in this case, is the the difference between means that we expect to obtain in the
population.

The power of the test and the required sample size are calculated based on the noncentral t‐test distri‐
bution.
EXAMPLE 7.4. We want to test (at the 0.05 significance level) whether treating an eating disorder at a
certain clinic produces a significant reduction in body weight after just 30 days of following a new type
of diet. We consider a change in BMI of half a unit to be a significant change in body weight. How large
a sample should be collected for a difference of this magnitude to be statistically significant in a t‐test
for dependent groups?

Because we do not have data from the pilot study, we will provide the basic data for the calculations
based on the experience and estimates of the clinic staff.
We assume that the average BMI of the treated person is 35 ‐ such a value is entered in the box for the
first mean. Since a change in BMI of less than half a unit is clinically insignificant, only a decrease below
34.5 (or an increase above 35.5) will be considered significant. Thus, we report a value of 34.5 (or 35.5)
as the second mean. We presume that the standard deviation of the difference (BMI before and BMI
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after) may be quite large, because usually the group will include people who are disciplined to follow a
diet and those who still enjoy extra snacks between meals. Therefore, we set the deviation to 2.5. The
power of the analysis we want to obtain is 80.

The resulting required sample size is 199 individuals when the hypothesis is two‐sided (i.e., we assume
that BMI may decrease or increase as a result of diet) or 156 individuals when the hypothesis is one‐
sided (i.e., we assume only a decrease in BMI).

If we assumed that the group would be more disciplined and the standard deviation of the difference
would be 1.5 BMI units, then the sample could be slightly smaller i.e. 73 individuals for the two‐sided
hypothesis test and 58 individuals for the one‐sided hypothesis.

7.2.3 T‐test for independent groups

Before determining the power or the required sample size of the t‐test for independent groups, it is
worthwhile to familiarize yourself with the rules of its application.

To determine the power of the test and the required sample size, we need:

Power of the test Group size
Group size 1 Power of the testGroup size 2

Group mean 1
Group mean 2

Common standard deviation
(or deviations of both groups)

Significance level α
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The set effect size, in this case, is the difference between means that we expect to obtain between
populations.

The power of the test and the required sample size are calculated based on the noncentral t‐test distri‐
bution.
EXAMPLE 7.5. We are examining men with disease X and healthy men. We want to test (at the 0.05
significance level) whether the patients differ from the healthy ones in their HDL cholesterol levels. We
consider a difference of 2 mg/dl to be clinically significant. How large a sample should be collected for
a difference of this magnitude to be statistically significant using t‐test for independent groups?

We report 40 mg/dL as the mean HDL for ill subjects and 42mg/dL for healthy subjects. The ratio of the
sample size of both groups is 1 because we assumed equal groups. We have data from the pilot study,
hence we report the standard deviation for sick (13 mg/dl) and healthy (11 mg/dl) indicating additional
options . The power of the analysis we want to obtain is 80.

The resulting required sample size is 571 individuals when the groups are equolous (i.e., we assume
due to n1/n2=1) or n1 = 855 and n2 = 428 when they are not equolous (i.e., we assume a sample size
ratio of n1/n2=2)

7.2.4 Chi‐square test for single sample variance

Before determining the power or the required sample size of the chi‐square test for single sample va‐
riance, it is worthwhile to familiarize yourself with the rules of its application.

To determine the power of the test and the required sample size, we need:

Power of the test Group size
Group size Power of the test
Hypothetical standard deviation

Group standard deviation
Significance level α

The set effect size, in this case, is the quotient of the standard deviation of the test population and the
hypothesized deviation.

The power of the test and the required sample size is calculated based on chi‐square distribution.
EXAMPLE 7.6. Before producing another batch of certain cough syrup, control measurements should
be taken of the amount of syrup poured into the bottles. The bottles should contain 200 ml of syrup.
The technical documentation of the dosing device shows that the permissible variation in syrup volume
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measured by the standard deviation is 1 ml. Verify (at the 0.05 significance level) that the device under
test is functioning properly. Will a sample of 20 bottles be sufficient to demonstrate excessive device
error, if any? A standard deviation greater than 1.2 ml is considered excessive device error.

Since we expect the standard deviation for the dispenser to be as documented we enter a value of 1 ml
as a hypothetical value. We will get too big error if the deviation exceeds 1.2 ml. We enter this value in
the standard deviation box for the group of bottles we are going to test.
If the sample is 20 bottles, the resulting power using the two‐sided hypothesis is only 0.25, and assuming
the one‐sided hypothesis is only 0.34. These are low values because less than 35% random samples of
will detect a device error of 0.2 ml.

It must be recognized that 20 bottles, is too small of a group to prove a too high device standard devia‐
tion, if indeed there is one. We would like to obtain a standard power.
To obtain a power of 80%we change the program settings and calculate the required sample size, which
in this case will be 115 for the two‐sided hypothesis and 92 for the one‐sided hypothesis.

7.2.5 Chi‐square test of two variances Fisher‐Snedecor

Before determining the power or the required sample size of the Fisher‐Snedecor test, it is worthwhile
to familiarize yourself with the rules of its application.

To determine the power of the test and the required sample size, we need:

Power of the test Group size
Group size 1 Power of the testGroup size 2

Group 1 standard deviation
Group 2 standard deviation

Significance level α

Copyright ©2010‐2023 PQStat Software – All rights reserved 96



7 TEST POWER AND SAMPLE SIZE

The set effect size, in this case, is the quotient of the standard deviation of populations one and two.

The power of the test and the required sample size is calculated based on the F‐Snedecor distribution.
EXAMPLE 7.7. Before producing another batch of certain cough syrup, control measurements should be
taken of the amount of syrup poured into the bottles. There should be 300 ml of syrup in the bottles.
Two dispensing devices are used in the bottling plant. We want to test (at the 0.05 significance level)
whether the distribution of syrup volume as measured by the standard deviation for the two devices
is the same. A small pilot study was conducted and the standard deviation for the first device was
found to be 1.32 and for the second device 1.1. If the difference is small, i.e., the quotient of the two
deviations is below 1.2 (as in the pilot study), both devices will be used interchangeably; if not, the one
with the smaller deviation from the mean will be chosen. How many randomly selected bottles should
be measured to show that a ratio of 1.2 is statistically significant?

We enter the value of the standard deviations obtained in the pilot study and assume an 80% power of
the test.

The resulting sample size for each device is n1=n2=239, assuming equal groups (i.e., ratio n1/n2=1) and
n1=363 and n2=182 assuming twice the sample size for the first device (i.e., ratio n1/n2=2).

7.2.6 Chi‐square test (goodness of fit)

Before determining the power or the required sample size of the chi‐square test (goodness of fit), it is
worthwhile to familiarize yourself with the rules of its application.

To determine the power of the test and the required sample size, we need[45]:

Power of the test Group size
Group size Power of the testNumber of categories

Effect size ϕ
Significance level α

The set effect size, or ϕ, in this case is the root of the quotient of the chi‐square test statistic and the
group size:

ϕ =

√
χ2

n
.

The power of the test and the required sample size are calculated based on a noncentral chi‐square
distribution.
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7.2.7 Chi‐square test (RxC)

Before determining the power or the required sample size of the Chi‐square test RxC it is worthwhile
to familiarize yourself with the rules of its application.

To determine the power of the test and the required sample size, we need[45][127]:

Power of the test Group size
Group size

Power of the testNumber of categories (rows)
Number of categories (columns)

Effect size ϕ
Significance level α

The set effect size, or ϕ, in this case is the root of the quotient of the chi‐square test statistic and the
group size:

ϕ =

√
χ2

n
.

The power of the test and the required sample size are calculated based on a noncentral chi‐square
distribution.
EXAMPLE 7.8. There are plans to conduct a large survey showing the knowledge of the Polish population
about ways of fighting common viruses. The project should determine whether educational activities
informing about the ineffectiveness of antibiotic therapy in viral infections were as effective in the older
age group (i.e. over 50 years) as in younger adults (18‐50 years). A pilot study was conducted and a
random sample of 200 peoplewas asked the question, ”Do antibiotics fight viruses?” Respondents were
asked the choose one of three answers: ”yes”, ”no” or ”don’t know” . The results of the pilot study were
prepared for publication. The following is an excerpt from the description included in the paper:

The obtained p‐value in the chi‐square test was statistically insignificant p=0.0672.

The paper reviewer was rightfully surprised to learn that twice as many people over the age of 50 in‐
correctly indicated that antibiotics fight viruses (22% vs. 11%), but this difference was not statistically
significant.
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As suggested by the reviewer, one should check whether the lack of statistical significance for this diffe‐
rence is due to the power of the test being too low, and state how large the sample should be to obtain
a chi‐square test power of 80% for the same percentages?

Preparing a response for the reviewer
We will determine the ϕ coefficient for the test (menu: Chi-square, Fisher, OR/RR→Correlation co-
efficients...→Phi). We obtain ϕ=0.1643.
Using a 200‐element sample, with data placed in a table with two rows and three columns, and a given
coefficient value of ϕ, we determine the power of the chi‐square test.

The power obtained in this analysis is low at 0.5368, which seems to confirm concerns about under‐
sampling.

If we get the same distribution of data for a sample with a different sample size, that means we also get
the same coefficient ϕ. To determine the sample size that would give us an 80% power of chi‐square
test, we again give the coefficient ϕ=0.1643.

We obtain information that a sample size of 357 respondents will be needed. Since this is only a pilot
study, we plan to increase the sample size to 357 respondents in the actual study.
However, we can already see that when omitting the undecided (i.e., those who chose the answer
”don’t know”) and redoing the analysis, significant differences can be found (chi‐square, p=0.0251). In
the decided group, the percentages choosing thewrong answer aremore than doubled to the detriment
of those aged >50 years (12.5% vs 25.9%).

8 Two independent proportions, chi‐square (2x2)

Before determining the power or the required sample size of the chi‐square (2x2) and Z test for two
independent proportions It is worthwhile to familiarize yourself with the rules of their application.
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To determine the power of the test and the required sample size, we need[35]:

Power of the test Group size
Group size Power of the test
The proportion in the first group

The proportion in the second group
Significance level α

The set effect size, is the difference between the highlighted proportions.

The test value and the required sample size are calculated based on the normal distribution normal
distribution.
EXAMPLE 8.1. Consider a study evaluating the effectiveness of aspirin in reducing mortality from my‐
ocardial infarction. Previous studies indicate that the rate of death from myocardial infarction is 0.015
for nonusers and 0.001 for aspirin users. The researchers want to determine the minimum sample size
required to detect an absolute difference | 0.001‐0.015 | = 0.014 at 80% power using a two‐sided test
with a significance level of 5%.

Assuming the groups are equal, 635 people need to be picked for each group.

8.0.1 One‐way ANOVA for independent groups

Before determining the power or the required sample size of the One‐way ANOVA for independent
groups It is worthwhile to familiarize yourself with the rules of its application.

To determine the power of the test and the required sample size, we need:

Power of the test Group size
Group size Power of the test

Group 1 mean
Group 2 mean
Group 3 mean
Group 4 mean

Group 1 standard deviation
Group 2 standard deviation
Group 3 standard deviation
Group 4 standard deviation

Significance level α
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The set effect size, in this case, is the RMSSE, which is the standardized measure used in ANOVA to
describe the overall level of effect in the population.

The power of the test and the requiredy sample size are calculated based on the non‐central F‐Snedecor
distribution.
EXAMPLE 8.2. The FVC parameter was studied for patients with heart defects (heart defect A, heart
defect B and heart defect C). We want to find out (at a significance level of 0.05) whether the patients
differ in the values of this parameter. To test this, a pilot study was first conducted. Based on the results
of this study, the predicted effect sizes were determined, i.e:
‐ for heart defect A: mean = 3.8, standard deviation = 1.1,
‐ for heart defect B: mean = 4.5, standard deviation = 0.6,
‐ for heart defect C: mean = 4.2, standard deviation = 0.9.
How many people should be gathered if the quantities remain the same to prove that there are stati‐
stically significant differences?

We enter values for means and standard deviations. The resulting sample size for each of the study
groups is 33, assuming an 80% power of the test.

8.0.2 Test for one proportion

Before determining the power or the required sample size of the test for one proportion it is worthwhile
to familiarize yourself with the rules of its application.

To determine the power of the test and the required sample size, we need:

Power of the test Group size
Group size Power of the test

Expected proportion
Group proportion
Significance level α

The set effect size, in this case, is the amount of difference between the set proportion in the study
population and the hypothetical expected proportion.

The power of the test and the required sample size are calculated based on the normal distribution
when using the asymptotic test or the binomial distribution when using the exact test.
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EXAMPLE 8.3. 10 randomly selected families with children under the age of 10 and residing in Poznań
were asked about the plans for their children’s education. Of these, 6 families planned to educate their
children at university. At a significance level of 0.05 and a test power of 0.8, how large a sample would
we need to collect to conclude that more than 50% of the families in Poznań with children under the
age of 10 are already planning for their children to attend university in the future?

We enter 0.5 as the expected proportion and 0.6 as the group proportion. The resulting sample size
is 194 families‐when the hypothesis being tested is two‐sided or 153 families‐when the hypothesis is
one‐sided.

9 DESCRIPTIVE ANALYSES

10 DESCRIPTIVE ANALYSES

The data collected by the researcher should first be described. Depending on how the measurements
are made (on the measurement scale), different measures will be used to describe the variable.

10.1 MEASURING SCALES

The correct determination of the type of analysis to be performed depends on the scale used to repre‐
sent the collected data. There are 3 main measurement scales:

1. interval scale

A variable is represented on an interval scale when:

‐ it can be organized,
‐ it can be calculated by howmuch one element is larger than the other and the difference of
these elements has a real world interpretation. Usually a unit of measurement is specified.

Example: object mass [kg], object area [m], time [years], speed [km/h], etc.

2. Ordinal scale

A variable is represented on an ordinal scale when:

‐ it can be organized, i.e. the order in which the elements appear matters,
‐ there is no meaningful way to determine the difference or quotient between two values.
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Example: education, order of competitors on the podium, etc.

Note!
If a variable is expressed on an ordinal scale, then to be able to perform calculations on it properly
it should be saved using numbers. These numbers are conventional identifiers that tell you the
order of the elements.

3. Nominal scale

A variable is expressed on a nominal scale when:

‐ it cannot be ordered, i.e. there is no order resulting from the nature of a given event.,
‐ The difference or quotient between two values cannot be determined in a meaningful way.

Example: gender, country of residence, etc.

Note!
If a variable is expressed on a nominal scale, it can be stored using text labels. Even if the values
of a nominal variable are expressed numerically, the numbers are only conventional identifiers,
so you cannot perform arithmetic operations on them or compare them.

Before proceeding with analysis, it is recommended to assign measurement scales to individual varia‐
bles. Such assignment will result in the variable headers gaining the corresponding color for the scale,
i.e., green = interval scale , yellow = ordinal scale , red = nominal scale . The color of the variables
(and therefore their scale) will be visible in the data sheet and in the list of variables in the analysis
windows.

Assigning a scale to a selected variable canbedone in the variable optionswindowCodes/Labels/Format
or in the context menu on the header of the selected variable.

Quantitative data are any information that can be quantified, counted or measured and given a nume‐
rical value. Quantitative data include the interval scale and sometimes also the ordinal scale.
Qualitative data are descriptive in nature, expressed in linguistic terms rather than in numerical values.
Qualitative data include a nominal scale and sometimes also an ordinal scale.

An ordinal scale that has a possible number of objectified categories is quantitative data, e.g., the SF‐36
quality of life scale (from 0 to 100 points), but if there are so few categories that can be described by
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text, e.g., education (primary, secondary, tertiary), then it is qualitative data.

10.2 TABLES

10.2.1 FREQUENCY TABLES AND EMPIRICAL DISTRIBUTION OF THE DATA

The basis of statistical research is the determination of the empirical distribution, i.e., the distribution
of a feature observed in a sample. The empirical distribution is determined by assigning a frequency
of occurrence to successive values of the feature. Such distribution can be presented in the form of
frequency table or as a graph (histogram). For small data sets, frequency tables can present all data ‐
the so‐called point distribution series, while for larger data sets the so‐called interval distribution series
are created.

To represent the data distribution in table form, bring up the Frequency tables window by selecting
menu Statistics→Descriptive analysis→Frequency tables.

In this windowwe choose a variable to analyze and options for analysis. You can sort the output as a text
or as a number by selecting the appropriate options. If there are empty cells in the analyzed column,
they may be included or omitted in the analysis. The result of analysis will be placed in report attached
to datasheet, for which analysis has been done.

In addition, if youwant the data to be visualizedwith a column chart or histogram, then in theFrequency
table window, check the Add graph option..
EXAMPLE 10.1. (distribution.pqs file)
A mobile operator conducts a series of surveys on how customers use the number of ”free minutes”
they are given in their subscription. Customers can use up to 190 such minutes each month. The study
was based on a random sample of 200 customers. Information analyzed included:
‐ type of subscription purchased,
‐ number of free minutes used,
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‐ number of subscriptions registered for a given customer (does not apply to companies).

We want to present the distribution of:

1. type of subscription,

2. number of free minutes used,

3. number of registered subscriptions for an individual person.

Open the Frequency table window..

1. Select the Variable to analyze: ”type of subscription” and Add graph. Then confirm the selected
settings with OK button and the result is obtained as a report:

2. Resume Analysis by pressing . We select the variable to analyze: ”amount of used free
minutes” and check the option Intervals (classes), set start value for example to 130 and step to
5. We can also check the option Add graph. Then confirm the selected options with OK and the
result is obtained as a report:
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3. Resume Analysis by pressing . We set filter so that the analysis is performed only for
individuals. We select the variable to analyze: ”Number of subscriptions”. Since this variable also
contains missing data, the result obtained may or may not include these missing cases in the
analysis, depending on the option selected:
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EXAMPLE 10.2. (fertiliser.pqs file)
An experiment was conducted to study the microbiological condition of soil under perennial ryegrass
cultivation supplied with biologically active fertilizers. Soils were fertilized with different types of micro‐
bial preparations and fertilizers and then the number of microorganisms present per gram of soil dry
matter was calculated. We want to know the frequency of actinomycetes per 1 gram of dry nitrogen
fertilized soil. We are interested in how often 0 to 20 actinomycetes were present in the sample, more
than 20 to 40 actinomycetes, more than 40 to 60 actinomycetes, etc. We select only the first 54 rows in
the datasheet that match the assumptions of the analysis (these are nitrogen‐fertilized actinomycetes)
and open the Frequency Tables.
In the options window, we select the variable to be analyzed: Number of microorganisms, and then set
the class intervals so that the start value is 0 and the step is 20. You should see a message at the top of
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the window: Data limited by selection . Confirm the selectionwith the OK button and the result should
appear as a report:

10.2.2 TABLE REPORT

Using a table report, you can prepare a simultaneous summary of a large amount of data in the form
of bivariate tables (tables of two features). For example, we can present the distribution of age groups
by place of residence, education, etc. in the form of a table. Each table is presented in the form of
frequency in particular categories, and additionally, it can be summarized by calculating percentages
from a row, from a column, or from the total sum, and determining the frequency table expected. In
addition, automatic summaries in the form of a column chart are possible for such tables. The window
with the table report settings is opened via menu Statistics→Descriptive analysis→Table report
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EXAMPLE 10.3. (Tables.pqs file)
In the form of tables, we need to summarize the distribution of gender by place of residence, social and
living conditions, education, marital status, and the distribution of age groups with respect to the same
characteristics. This will result in 4 tables for each pair of traits, or 8 tables for all pairs and corresponding
graphs. Only the distribution with respect to gender is presented below:
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For the distributionwith respect to age groups, age categorieswere first created through codes/labels/format.

10.2.3 ANALYSES FOR CONTINGENCY TABLES

Analyses for the contingency tables can be computed from data collected in the contingency tables or
directly i.e., from raw data. Whereby it is possible to transform the data from the contingency table to
the raw form or vice versa.

EXAMPLE 10.4. (sex‐education.pqs file)
Consider a sample consisting of 34 individuals (n = 34). We examine 2 traits of these individuals
(X=sex, Y =education). Gender appears in 2 categories (X1=female, X2=male) education in 3 cate‐
gories, (Y1=primary + vocational Y2=medium, Y3=higher).

In the case of raw data, when you open the test options window, e.g., the χ2 for the C ×R tables,
the raw data option will automatically be selected..

Copyright ©2010‐2023 PQStat Software – All rights reserved 113



10 DESCRIPTIVE ANALYSES

For data collected in a contingency table, it is a good idea to select this data (numerical values without
headers) before opening the test window. Then, when you open the test window, the contingency table
option will automatically be selected and the data from the selection will be displayed.

In the test window, we can always change the automatically detected setting regarding the form of data
organization, as well as enter data into the contingency table from the window.
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Cochran’s condition
This is a basic condition for using many statistical tests based on contingency tables, e.g., the chi‐square
test. This condition implies a large expectred frequencies. According toCochran’s 1952 interpretation[40],
none of the expected frequencies can be < 1 and no more than 20% can be < 5. Information about
whether this condition is met (or not) by the data collected in the table can be returned to the report.

Basic tests for contingency tables:

• Chi‐square goodnes‐of‐fit test

• RxC (2x2) chi‐square test and its corrections

• Chi‐square test for trend for Rx2 tables

• McNemar test, Bowker internal symmetry test

• Chi‐square test for multidimensional contingency tables

• Q‐Cochran’s ANOVA

• Mantel‐Haenszel method for 2×2 tables

Coefficients for contingency tables:

• Relative Risk and Odds Ratio

• Contingency coefficients: Q‐Yule, Phi, V ‐Cramer, C‐Pearson

• Cohen’s Kappa Coefficient of agreement

• Kappa Fleiss coefficient

• Sensitivity and specificity, PPV, NPV, LR(+), LR(‐), prevalence, accuracy

You can also include a basic summary of the tables in the results report:

• Contingency table of observed frequencies − that is, data in the form of a contingency table.
Such a table shows the distribution of observations for several traits (several variables). Table for
2 traits (X , Y ), of which the first has possible r and the second c categories are shown below
(table(10.1)).
Tabela 10.1. Contingency table r × c of observed frequencies

Frequencies Trait Y
observedOij Y1 Y2 ... Yc Total

TraitX

X1 O11 O12 ... O1c
∑c

j=1O1j

X2 O21 O22 ... O2c
∑c

j=1O2j

... ... ... ... ... ...
Xr Or1 Or2 ... Orc

∑c
j=1Orj

Suma
∑r

i=1Oi1
∑r

i=1Oi2 ...
∑r

i=1Oic n =
∑r

i=1

∑c
j=1Oij

Frequencies observed Oij (i = 1, 2, . . . , r; j = 1, 2, . . . , c) represent the frequency of each
category for both traits.
In order for such a table to be returned by the program, the option include analyzed data should
be selected in the test window. For the data from the example (10.4), the contingency table of
observed frequencies is as follows:
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• A contingency table of expected frequencies− for each contingency table of observed frequen‐
cies, a corresponding table of expected frequencies: Eij can be created (tabela(10.2)).
Tabela 10.2. Contingency table r × c expected frequencies

frequencies Trait Y
expected Eij Y1 Y2 ... Yc

TraitX

X1 E11 E12 ... E1c

X2 E21 E22 ... E2c

... ... ... ... ...
Xr Er1 Er2 ... Erc

where:
E11 =

∑r
i=1 Oi1×

∑c
j=1 O1j

n , E12 =
∑r

i=1 Oi2×
∑c

j=1 O1j

n , E1c =
∑r

i=1 Oic×
∑c

j=1 O1j

n

E21 =
∑r

i=1 Oi1×
∑c

j=1 O2j

n , E22 =
∑r

i=1 Oi2×
∑c

j=1 O2j

n , E2c =
∑r

i=1 Oic×
∑c

j=1 O2j

n

Er1 =
∑r

i=1 Oi1×
∑c

j=1 Orj

n , Er2 =
∑r

i=1 Oi2×
∑c

j=1 Orj

n , Erc =
∑r

i=1 Oic×
∑c

j=1 Orj

n .

For the data in the example (10.4) The contingency table of expected frequencies is as follows:

• Contingency table of percentages calculated from the sum of columns. For the data in the exam‐
ple (10.4) this table is as follows:

• Tcontingency table of percentages calculated from the sum of the rows. For the data in the
example (10.4) this table is as follows:

• A contingency table of percentages calculated from the sum of the total rows and columns. For
the data in the example (10.4) this table is as follows:
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10.3 DESCRIPTIVE STATISTICS

The purpose of using descriptive statistical methods is to summarize a set of data by certain characteri‐
stics, e.g., by the value of themean, median, or standard deviation, and to draw some basic conclusions
and generalizations about the dataset.

To calculate descriptive statistics for the data collected in the datasheet, open the Descriptive statistics
window via menu Statistics→Descriptive analysis→Descriptive statistics.

In this window, we select the variable to be analyzed and the analysis settings and select the descriptive
statistics measures we are interested in. You may select individual statistics or groups of statistics by
clicking on the . Confirm the selection by pressing OK. The result of the analysis will be in a report
attached to the datasheet for which the analysis was performed.

In addition, if you want the data to be visualized with a box‐and‐whisker chart, then in the Descriptive
statistics window select the Add graph.

10.3.1 LOCATION MEASURES

10.3.2 MEASURES OF CENTRAL TENDENCY

Measures of central tendency are so‐called average measures that characterize the average or typical
level of a trait’s values.

Arithmetic mean is expressed by the formula:

x =
x1 + x2 + · · ·+ xn

n
=

∑n
i=1 xi
n

,

where xi is the consecutive values of the variable and n is the sample size.

The arithmetic mean is used for interval scale. For a sample it is taken to be denoted by x and for a
population by µ.
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Trimmed mean ‐ is determined as the arithmetic mean calculated after removing from the sample a
given percentage of the smallest and largest measurements, e.g. if we cut off 5 per cent of the measu‐
rements, it means that we cut off 2.5 per cent of the largest and 2.5 per cent of the smallest values. At
the same time, if the number of measurements to be removed obtained from the conversion is not an
integer, it is rounded down to the nearest whole number.

Winsor mean ‐ is determined as the arithmetic mean calculated after replacing the appropriate per‐
centage of extreme measurements with the smallest and largest value that remains of the reduced set
of values. If we choose to calculate the Winsor average by pruning, say, 5% of the measurements, then
those discarded 5% will be replaced by the smallest and largest value determined from the remaining
95% of themeasurements. As with the pruned average, when converting the percentage of values to be
replaced to the number of measurements to be replaced does not result in an integer, then we round
down to the nearest integer. Geometric mean is expressed by the formula:

xG = n
√
x1x2...xn = n

√√√√ n∏
i=1

xi.

This mean is used for the interval scale, when the variable has a log‐normal distribution (the logarithm
of the variable has a normal distribution).

Harmonic mean is expressed by the formula:

xH =
n

1
x1

+ 1
x2

+ · · ·+ 1
xn

=
n∑n

i=1
1
xi

.

This mean is used for the interval scale.

Median
In an ordered data set, the median is the value that divides the data set into two equal parts. Half of all
observations are below and half are above the median.

min

max

median

50%

50%

The median can be used in interval and ordinal scale.

Mode
Mode − is the value that occurs most frequently among the measurements obtained. Fashion can be
used at any measurement scale.
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10.3.3 OTHER MEASURES OF LOCATION

Quartiles, deciles, centiles

max

min

C75 = upper quartile =Q3

C50 = median =Q2

C25 = lower quartile =Q1

25%

25%

25%

25%

Quartiles (Q1, Q2, Q3) divide the ordered series into 4 equal parts, deciles (Di, i = 1, 2, ..., 9) into 10
equal parts and centiles (percentiles:Ci, i = 1, 2, ..., 99) into 100 equal parts. The second quartile, fifth
decile, and fiftieth centile are equal to the median. These measures can be used in the interval and
ordinal scale.

10.3.4 MEASURES OF VARIABILITY (DISPERSION)

Central tendency measures knowledge is not enough to fully describe a statistical data collection struc‐
ture. The researched groups may have various variation levels of a feature you want to analyse. You
need some formulas then, which enable you to calculate values of variability of the features.

Measures of variability are calculated only for an interval scale, because they are based on the distance
between the points.

Range is formulated:
I = maxxi −minxi,

where xi are values of the analyzed variable

IQR = Interquartile range = Q3 −Q1,

whereQ1, Q3 are the lower and the upper quartile.

Ranges for a percentile scale (decile, centile)
Ranges between percentiles are one of the dispersion measures. They define a percentage of all obse‐
rvations, which are located between the chosen percentiles.

Variance−measures a degree of spread of the measurements around arithmetic mean

sample variance:

sd2 =

∑n
i=1(xi − x)2

n− 1
,

where xi are following values of variable and x is an arithmetic mean of these values,
n ‐ sample size;

population variance:

σ2 =

∑N
i=1(xi − µ)2

N
,
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where xi are following values of variables and µ is an arithmeticmean of these values,
N ‐ population size;

Variance is always positive, but it is not expressed in the same units as measuring results.

Standard deviation−measures a degree of spread of the measurements around arithmetic mean.

sample standard deviation:
sd =

√
sd2,

population standard deviation:
σ =

√
σ2.

The higher standard deviation or a variance value is, the more diversed is the group in relation to an
analyzed feature.

Note
The sample standard deviation is a kind of approximation (estimator) of the population standard devia‐
tion. The population standard deviation value is included in a rangewhich contains the sample standard
deviation. This range is called a confidence interval for standard deviation.

Coefficient of variation
Coefficient of variation, just like standard deviation, enables you to estimate the homogeneity level of
an analyzed data collection. It is formulated as:

V =
sd

x
100%,

where sdmeans standard deviation, xmeans arithmetic mean.

This is a unitless value. It enables you to compare a diversity of several different datasets of a one
feature. And also, you are able to compare a diversity of several features (expressed in different units).
It is assumed, ifV coefficient does not exceed 10%, features indicate a statistically insignificant diversity.

Standard errors− they are notmeasures of ameasurement dispersion. Theymeasure an accuracy level,
you can define the population parameters value, having just the sample estimators.
Standard error of the mean is defined by:

SEM = standard error of the mean =
sd√
n
.

Note
On the basis of a sample estimator you can calculate a confidence interval for a population parameter.

10.3.5 ANOTHER DISTRIBUTION CHARACTERISTICS

Skewness or asymmetry coefficient in other words
This measure tells us how data distribution differs from symmetrical distribution. The closer the value
of skewness is to zero, the more symmetrically around the mean the data are spread. Usually the value
of this coefficient is included in a range [‐1, 1], but in the case of a very big asymmetry, it may occur
outside the above‐mentioned range. A positive skew value indicates that the right skew occurs (the tail
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on the right side is longer), whereas the negative skew indicates that the left skew occurs (the tail on
the left side is longer). Skewness is defined by:

A =
n

(n− 1)(n− 2)

n∑
i=1

(
xi − x

sd

)3

,

where:
xi − the following values of a variable,
x, sd− adequately ‐ arithmetic mean and standard deviation xi,
n− sample size.

right skew
A > 0

Med.Mode X

fre
qu

en
cy

x

left skew
A < 0

Med. ModeX

fre
qu

en
cy

x

Kurtosis or coefficient of concentration
This measure tells us how much the spread of data around the mean is similar to the spread of data in
normal distribution. The greater than zero the value of kurtosis is, the more narrow the tested distribu‐
tion than normal one is. And inversely, the lower than zero the value of kurtosis is, the flatter the tested
distribution than the normal one is. Kurtosis is defined by:

K =
n(n+ 1)

(n− 1)(n− 2)(n− 3)

n∑
i=1

(
xi − x

sd

)4

− 3(n− 1)2

(n− 2)(n− 3)
,

where:
xi − the following values of a variable,
x, sd− adequately ‐ arithmetic mean and standard deviation of xi,
n− sample size.

K1 < 0

K2 > 0

X

fre
qu

en
cy

x

EXAMPLE 10.5. (fertilisers.pqs file)
In an experiment related to a soil fertilising the with various sorts of microbiological specimens and
fertilisers it was calculated how many microorganisms occur in a 1 gramme of dry mass of soil. Now
we would like to calculate descriptive statistics of the amount of actinomycetes for the sample fer‐
tilised with nitrogen. Additionally, we want the data to be illustrated in the Box‐Whiskers plot. In a
datasheet, we select only the 54 first rows, which are relevant to the assumptions of the analysis (there
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are actinomycetes fertilised with nitrogen). Then we open Descriptive statistics window in Statistics
menu→Descriptive analysis→Descriptive statistics.
In the window of descriptive statistics options, select a variable to analyse: the number of microorga‐
nisms, and then all the procedures you want to follow (for example arithmetic mean altogether with
the confidence interval, median, standard deviation altogether with the confidence interval, and an
information about the skewness and kurtosis of distribution altogether with errors). At the top of the
window you should see the following message: Data limited by the selected area . To add a graph to
the report, we select Add graph option and chose the Box‐Whiskers plot type . Confirm your choice by
clicking OK and you get the result in a report:
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10.4 DESCRIPTIVE SUMMARIES

Descriptive summaries are a quick way to prepare a report showing a description of your data that is
ready to be inserted directly into a research paper. It is a tool that makes it easy to compile all forms of
basic data description in one place.
The Descriptive summaries option settings window is invoked via the menu
textsfStatistics menu→Descriptive analysis→Descriptive summaries.
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Depending on how we measure, we usually use one of three types of measures to describe a variable:

• mean ± standard deviation, abbreviated x± sd

• median [lower quartile; upper quartile], abbreviated Me[Q1;Q3] or median [min; max], abbre‐
viatedMe[min;max]

• the number (percentage) of each category, abbreviated n(%)

Depending on the need and fulfillment of additional assumptions

• in the interval scale, data can be described using any measure, in addition, often the researcher
wants to check the normality of the distribution of such data,

• in the ordinal scale we have medians (with quartiles or the smallest and the largest value) or
counts and percentages of particular categories,

• at the nominal scale, only the counts and percentages of each category.

EXAMPLE 10.6. (Descriptive summaries.pqs file)
An example of how the data are described is shown in the obtained report summarizing age, pain level,
and smoking status. These data are summarized in table one describing all 100 subjects and in table
two by treatment method.
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11 PROBABILITY DISTRIBUTIONS

A real data distribution from a sample ‐ empirical data distribution may be carried out in a mean of a
frequency tables (by selecting Statistic menu→Descriptive analysis)→Frequency tables). For example,
a distribution of the amount of used free minutes by subscribers of some mobile network operator
(example (10.1), distribution.pqs file) performs the following table:

A graphical presentation of results included in a table is usually done using a histogram or a bar plot.
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Such graph can be created by selecting Add graph option in the Frequency tables window.

Theoretical data distributionwhich is also called a probability distribution is usually presented graphi‐
cally by means of a line graph. Such line is described by a function (mathematical model) and it is called
a density function. You can replace the empirical distribution with the adequate theoretical distribu‐
tion.

Note
To replace an empirical distribution with the adequate theoretical distribution it is not enough to draw
conclusions upon similarity of their shapes intuitively. To check it, you should use specially created com‐
patibility tests.

The kind of probability distribution which is used the most often is a normal distribution (Gaussian di‐
stribution). Such distribution with a mean of 161.15 and a standard deviation 13.03 is presented by the
data relating to the amount of used free minutes (example (10.1), distribution.pqs file).
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11.1 CONTINUOUS PROBABILITY DISTRIBUTIONS

• Normal distribution which is also called the Gaussian distribution or a bell curve, is one of the
most important distribution in statistics. It has very interesting mathematical features and occurs
very often in nature. It is usually designated withN(µ, σ).

A density function is defined by:

f(x, µ, σ) =
1√
2πσ

exp
(
− (x− µ)2

2σ2

)
,

where:
−∞ < x < +∞,
µ – an expected value of population (its measure is mean),
σ – standard deviation.

0 1 2 3 4−1−2−3−4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

y

N(0, 1) N(1, 1)

N(0, 4)

Normal distribution is a symmetrical distribution for a perpendicular line to axis of abscissae going
through the points designating the mean, mode and median.

Normal distributionwith amean ofµ = 0 andσ = 1 (N(0, 1)), is so called a standardised normal
distribution.

• t‐Student distribution – the shape of t‐Student distribution is similar to standardised normal di‐
stribution, but its tails are longer. The higher the number of degrees of freedom (df ), the more
similar the shape of t‐Student distribution to normal distribution.

A density function is defined by:

f(x, df) =
Γ(df+1

2 )

Γ(df2 )
√
dfπ

(
1 +

x2

df

)− df+1
2

,

where:
−∞ < x < +∞,
df – degrees of freedom (sample size is decreased by the number of limitations in
given calculations),
Γ is a Gamma function.
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0 1 2 3 4−1−2−3−4
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• Chi‐square (χ2) distribution, this is a right‐skewed distribution with a shape depending on the
number of degrees of freedomdf . The higher the number of degrees of freedom, themore similar
the shape of χ2 distribution to the normal distribution.

Density function is defined by:

f(x, df) =
1

2
df
2 Γdf

2

x
df
2
−1e−

x
2 ,

where:
x > 0,
df – degrees of freedom (sample size is decreased by the number of limitations in
given calculations),
Γ is a Gamma function.

x

y

χ2(df = 1)

χ2(df = 5)

χ2(df = 10)
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0

0.1

0.2
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• Fisher‐Snedecor distribution, this is a distribution which has a right tail that is longer and a shape
that depends on the number of degrees of freedom df1 and df2.
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A density function is defined by:

F (x, df1, df2) =

√
(df1x)df1d

df2
2

(df1x+df2)df1+df2

xB
(
df1
2 , df22

) ,

where:
x > 0,
df1, df1 – degrees of freedom (it is assumed that if X i Y are independent with a χ2

distribution with adequately df1 and df2 degrees of freedom, than F = X/df1
Y /df2

has a F
Snedecor distribution F (df1, df2)),
B is a Beta function.

F (df1 = 1, df2 = 1)

F (df1 = 3, df2 = 12)

F (df1 = 12, df2 = 3)
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11.2 PROBABILITY DISTRIBUTION CALCULATOR

The area under a curve (density function) is p probability of occurrence of all possible values of an
analysed random variable. The whole area under a curve comes to p = 1. If you want to analyse just a
part of this area, youmust put the border value, which is called the critical value or Statistic. To do this,
you need to open the Probability distribution calculator window. In this window you can calculate not
only a value of the area under the curve (p value) of the given distribution on the basis of Statistic, but
also Statistic value on the basis of p value. To open the window of Probability distribution calculator,
you need to select Probability distribution calculator from the Statistics→Calculators menu.

EXAMPLE 11.1. Probability distribution calculator
Some mobile network operator did the research, which was supposed to show the usage of ”free mi‐
nutes” given to his clients on a pay‐monthly contract. On the basis of the sample, which consists of
200 of the above‐mentioned network clients (where the distribution of used free minutes is of the
shape of normal distribution) is calculated the mean value x = 161.15min. and standard deviation
sd = 13.03min.We want to calculate the probability, that the chosen client used:

1. 150 minutes or less,

2. more than 150 minutes,

3. the amount of minutes coming from the range [x− sd, x+ sd] = [148.12min., 174.18min.],

4. the amount of minutes out of the range x± sd.

Open the Probability distribution calculator window, select Gaussian distribution and write the mean
x = 161.15min. and standard deviation sd = 13.03min. and select the option which indicates, that
you are going to calculate the p value.

1. To calculate (using normal distribution (Gauss)) the probability that the client you have chosen
used 150 free minutes or less, put the value of 150 in the Statistic field. Confirm all selected
settings by clicking Calculate.

N(161.15, 13.03)

150
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The obtained p value is 0.193961.

Note
Similar calculations you can carry out on the basis of empirical distribution. The only thing you
should do is to calculate a percentage of clients who use 150 minutes or less (example (10.1) by
using the Frequency tables window. In the analysed sample (which consists of 200 clients) there
are 40 clients who use 150 minutes or less. It is 20% of the whole sample, so the probability you
are looking for is p = 0.2.

2. To calculate the probability (using the normal distribution (Gauss)), that the client who you have
chosen used more than 150 free minutes, you need to put the value of 150 in the Statistic field
and than select the option 1 - (p value). Confirm all the chosen settings by clicking Calculate.

N(161.15, 13.03)

150

The obtained p value is 0.806039.

3. To calculate (using the normal distribution (Gauss)) a probability that the client you have chosen
used free minutes which come from the range [x − sd, x + sd] = [148.12min., 174.18min.] in
the Statistic field, put one of the final range values and than select the option two-sided. Confirm
all the chosen settings by clicking Calculate.

N(161.15, 13.03)

148.12 174.18

The obtained p value is 0.682689.

4. To calculate (using the normal distribution (Gauss)) a probability, that the client you have chosen
used free minutes out of the range [x− sd, x+ sd] = [148.12min., 174.18min.] in the Statistic
field put one of the final range values and than select the option: two-sided and 1 - (p value).
Confirm all the chosen settings by clicking Calculate.

N(161.15, 13.03)

148.12 174.18
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The obtained p value is 0.317311.
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12 HYPOTHESIS TESTING

The process of generalization of the results obtained from the sample for the whole population is divi‐
ded into 2 basic parts:

• estimation− estimating values of the parameters of the population on the basis of the statistical
sample,

• verification of statistical hypotheses − testing some specific assumptions formulated for the
parameters of the general population on the basis of sample results.

12.0.1 POINT AND INTERVAL ESTIMATION

In practice, we usually do not know the parameters (characteristics) of the whole population. There
is only a sample chosen from the population. Point estimators are the characteristics obtained from a
random sample. The exactness of the estimator is defined by its standard error. The real parameters
of population are in the area of the indicated point estimator. For example, the population parameter
arithmetic mean µ is in the area of the estimator from the sample which is x.

If you know the estimators of the sample and their theoretical distributions, you can estimate values of
the population parameters with the confidence level (1−α) defined in advance. This process is called
interval estimation, the interval: confidence interval, and α is called a significance level.

The most popular significance level comes to 0.05, 0.01 or 0.001.

12.0.2 VERIFICATION OF STATISTICAL HYPOTHESES

To verify a statistical hypotheses, follow several steps:

The 1st step:Make a hypotheses, which can be verified by means of statistical tests.

Each statistical test gives you a general form of the null hypothesis H0 and the alternative one
H1:

H0 : there is no statistically significant difference among populations
(means, medians, proportions distributions etc.),

H1 : there is a statistically significant difference among populations
(means, medians, proportions, distributions etc.).

Researcher must formulate the hypotheses in the way, that it is compatible with the reality and
statistical test requirements, for example:

H0 : the percentage of women and men running their own businesses
in an analysed population is exactly the same.

If you do not know, which percentage (men or women) in an analysed population might be gre‐
ater, the alternative hypothesis should be two‐sided. It means you should not assume the direc‐
tion:

H1 : the percentage of women and men running their own businesses
in an analysed population is different.
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It may happen (but very rarely) that you are sure you know the direction in an alternative hypo‐
thesis. In this case you can use one‐sided alternative hypothesis.

The 2nd step: Verify which of the hypothesesH0 orH1 is more probable. Depending on the kind
of an analysis and a type of variables you should choose an appropriate statistical test.

Note 1
Note, that choosing a statistical test means mainly choosing an appropriate measu‐
rement scale (interval, ordinal, nominal scale) which is represented by the data you
want to analyse. It is also connected with choosing the analysis model (dependent or
independent)

Measurements of the given feature are called dependent (paired), when they are ma‐
de a couple of times for the same objects. When measurements of the given feature
are performed on the objects which belong to different groups, these groups are cal‐
led independent (unpaired)measurements.

Some examples of researches in dependent groups:
Examining a body mass of patients before and after a slimming diet, examining reac‐
tion on the stimulus within the same group of objects but in two different conditions
(for example ‐ at night and during the day), examining the compatibility of evaluating
of credit capacity calculated by two different banks but for the same group of clients
etc.

Some examples of researches in independent groups:
Examining a bodymass in a group of healthy patients and ill ones, testing effectiveness
of fertilising several different kinds of fertilisers, testing gross domestic product (GDP)
sizes for the several countries etc.

Note 2
A graph which is included in the Wizard window makes the choice of an appropriate
statistical test easier.

Test statistic of the selected test calculated according to its formula is connected with the ade‐
quate theoretical distribution.

α/2 α/2

1− α

value of test statistics

The application calculates a value of test statistics and also a p value for this statistics (a part of
the area under a curve which is adequate to the value of the test statistics). The p value enables
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you to choose a more probable hypothesis (null or alternative). But you always need to assume
if a null hypothesis is the right one, and all the proofs gathered as a data are supposed to supply
you with the enough number of counterarguments to the hypothesis:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

There is usually chosen significance levelα = 0.05, accepting that for 5 % of the situations wewill
reject a null hypothesis if there is the right one. In specific cases you can choose other significance
level for example 0.01 or 0.001.

Note
Note, that a statistical test may not be compatible with the reality in two cases:

reality
H0 : true H0 : false

test result H0 : true OK β
H0 : false α OK

We may make two kinds of mistakes:
α = 1st type of error (probability of rejecting hypothesisH0, when it is the right one),

β = 2nd type of error (probability of accepting hypothesis H0, when it is the wrong
one).

Power of the test is 1− β.

Valuesα and β are connected with each other. The approved practice is to assume the
significance level in advance α and minimalization β by decreasing a sample size.

The 3rd step: Description of results of hypotheses verification.
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13.0.1 One‐dimensional normality tests

A variety of tests may be applicable in testing the normality of a distribution, each of which pays atten‐
tion to slightly different aspects of the Gaussian distribution. It is impossible to identify a test that is
good for every possible data set.

The basic condition for using tests of normality of distribution:

− measurement on the interval scale.

Test hypotheses for normality of distribution:

H0 : the distribution of the characteristic under study in the population is normal,
H1 : the distribution of the examined characteristic in the population is different from the normal .

The value p, determined on the basis of test statistics, we compare with the significance level α :

if p ≤ α =⇒ we rejectH0 by adoptingH1,
if p > α =⇒ there is no basis to rejectH0.

Note!
Testing for normality of distribution can be done for variables or for differences determined from two
variables.

Kolmogorov‐Smirnov test for normality
The test proposed by Kolmogorov (1933)[92] is a relatively conservative test (it is more difficult
to prove the non‐normality of the distribution using it). It is based on the determination of the
distance between the empirical and theoretical normal distribution. It is recommended to use it
for large samples, but it should be used when the mean (µ) and standard deviation (σ) for the
population from which the sample is drawn are known. We can then check that the distribution
conforms to the distribution defined by the given mean and standard deviation.

Based on the sample data collected in the cumulative frequency distribution and the correspon‐
ding values of the area under the theoretical normal distribution curve, we determine the value
of the test statisticD:

D = sup
x

|Fn(x)− F (x)|,

where:
Fn(x) – empirical cumulative distribution of the normal curve computed at individual
points of the distribution, for n‐element sample ,
F (x) – theoretical cumulative distribution of the normal curve.

Statystyka testu podlega rozkładowi Kołmogorova‐Smirnova.

Lilliefors test for normality
A test proposedby Lilliefors (1967, 1969, 1973)[101][102][103]. It is a correctionof the Kolmogorov‐
Smirnov test when the mean (µ) and standard deviation (σ) are unknown for the population
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from which the sample is drawn. It is considered slightly less conservative than the Kolmogorov‐
Smirnov test.

The test statisticD is determined by the same formula used by the Kolmogorov‐Smirnov test, but
follows a Lilliefors distribution.

Shapiro‐Wilk test for normality

Proposed by Shapiro and Wilk (1965)[147] for sparse groups, and adapted for more numerous
groups (up to 5000 objects) by Royston (1992)[140][141]. This test has a relatively high power,
which makes it easier to prove the non‐normality of the distribution.
The idea of how the test works is shown in the Q‐Q plot.

The Shapiro‐Wilk test statistic has the form:

W =

∑n
i=1 aixi∑n

i=1(xi − x)2
,

where:
ai – coefficients determined based on expected values for ordered statistics, assigned
weights, and covariance matrix,
x – average value of sample data.

This statistic is transformed to a statistic with a normal distribution:

Z =
g(W )− µ

σ
,

where:
g(W ), µ i σ – depend on the sample size:
– for small sample sizes n ∈< 4; 12):

g(W ) = − ln(γ − ln(1−W )),
γ = 0.459n− 2.273,
µ = −0.0006714n3 + 0.025054n2 − 0.39978n+ 0.5440,
σ = exp(−0.0020322n3 + 0.062767n2 − 0.77857n+ 1.3822);

– for large sample sizes n ∈< 12; 5000 >:
g(W ) = ln(1−W ),
µ = 0.0038915u3 − 0.083751u2 − 0.31082u− 1.5851,
σ = exp(0.0030302u2 − 0.082676u− 0.4803),
u = ln(n).

D’Agostino‐Pearson test for normality
Different types of statistical analyses that assume normality are sensitive to different degrees to
different types of departure from this assumption. Tests that refer to means in their hypotheses
are assumed to be more sensitive to skewness, and tests that compare variances are assumed to
depend more on kurtosis.
A normal distribution should be characterized by zero skewness and zero kurtosis g2 (or b2 close
to the value three). If the distribution is not normal, as found by the D’Agostino (1973)[3] test,
one can check whether this is the result of high skewness or kurtosis by the skewness test and
the kurtosis test.
Like the Shapiro‐Wilk test, the D’Agostino test has higher power than the Kolmogorov‐Smirnov
test and the Lilliefors test (D’Agostino 1990[4]).

The test statistic is of the form:
K2 = Z2

A + Z2
K ,
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where:
Z2
A – test statistic for the skewness,

Z2
K – test statistic for kurtosis.

This statistic has an asymptotically χ2 distribution with two degrees of freedom.

• D’Agostino skewness test
Hypotheses:

H0 : distribution is not skewed (skewness in the population is zero),
H1 : the distribution is skewed (skewness in the population deviates from zero).

The test statistic has the form:

ZA = δ ln

(
Y

α
+

√
Y 2

α2
+ 1

)
,

where:
Y =

√
(b1)

√
(n+1)(n+3)

6(n−2) ,√
(b1) =

m3

m
(3/2)
2

,

mk =
∑n

i=1(xi−x)k

n ,
β(
√

(b1)) =
3(n2+27n−70)(n+1)(n+3)
(n−2)(n+5)(n+7)(n+9) ,

W 2 = −1 +
√
2(β(

√
(b1))− 1,

δ = 1√
lnW

,

α =
√

2
W 2−1

.

The statistic Z has asymptotically (for large suple size) a normal distribution.
• D’Agostino kurtosis test

Hypotheses:

H0 : kurtosis in the population corresponds to the kurtosis of a normal distribution,
H1 : the kurtosis in the population differs from the kurtosis of a normal distribution.

The test statistic has the form:

ZK =

(
1− 2

9H

)
−

(
1− 2

A

1+x
√

2
H−4

)1/3

√
2
9H

,

where:
E(b2) =

3(n−1)
n+1 ,

b2 =
m4

m2
2
,

var(b2) =
24n(n−2)(n−3)

(n+1)2(n+3)(n+5)
,

x = b2−E(b2)√
var(b2)

,√
β(b2) =

6(n2−5n+2)
(n+7)(n+9)

√
6(n+3)(n+5)
n(n−2)(n−5) ,

H = 6 + 8√
β(b2)

(
2√
β(b2)

+
√

1 + 4
β(b2)

)
.

The statistic Z has asymptotically (for large suple size) a normal distribution.

Copyright ©2010‐2023 PQStat Software – All rights reserved 139



13 NORMALITY DISTRIBUTION TESTS

Quantile‐Quantile plot (Q‐Q plot)
A quantile‐quantile type plot is used to show the correspondence of two distributions. When
testing the fit of a normal distribution, it checks the fit of the data distribution (empirical distri‐
bution) to a Gaussian theoretical distribution. From it, you can visually see how well the normal
distribution curve fits the data. If the quantiles of the theoretical distribution and the empiri‐
cal distribution match, then the points are distributed along the line y = x. The horizontal axis
represents the quantiles of the normal distribution, the vertical axis the quantiles of the data di‐
stribution

Various deviations from the normal distribution are possible – the interpretation of some of the
most common ones is described in the diagram:

• data spread out on the line, but a few points deviate strongly from the line
– there are outliers in the data

• points on the left side of the graph are above the line and on the right side are below the
line

– the distribution is characterized by a greater presence of outliers from the mean
than is the case in a normal distribution (negative kurtosis)

• points on the left side of the graph are below the line and the points on the right side are
above the line

– the distribution is characterized by a smaller presence of values away from the
mean than is the case in a normal distribution (positive kurtosis)

• points on the left and right sides of the graph are above the line
– right‐skewed distribution (positive skewness);

• points on the left and right sides of the graph are below the line
– left‐skewed distribution (negative skewness).

The window with the settings for the normality tests options is invoked via the Statistics→Normality
tests→One-dimensional normality menu or via Wizard.
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EXAMPLE 13.1. (Gauss.pqs file)

• Women’s growth
Let us assume that the height of women is such a characteristic, for which the average value is
168cm. Most of the women we meet every day are of a height not significantly different from
this average. Of course there are women who are completely short and also very tall, but rela‐
tively rarely. Since very low and very high values occur rarely, and average values often, we can
expect that the distribution of height is normal. To find out, 300 randomly selected women were
measured.

Hypotheses:

H0 : the height distribution of women in the study population
is normal ,

H1 : the height distribution of women in the study population
is not normal.

Since we do not know the mean or standard deviation for female height, but only have an as‐
sumption about these quantities, they will be determined from the sample.
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All of the designated tests indicate that there is no deviation from the normal distribution, as
their p values are above the standard significance level of α = 0.05. Also, the test that examines
skewness and kurtosis shows no deviation.

In the column chart, we presented the height distribution as 10 columns. Women between 167
cm and 171 cm are the most numerous group, while women shorter than 150 cm or taller than
184 cm are the least numerous. The bell curve of the normal distribution seems to describe this
distribution well.

Copyright ©2010‐2023 PQStat Software – All rights reserved 142



13 NORMALITY DISTRIBUTION TESTS

In the quantile‐quantile plot, the points lie almost perfectly on the line, which also indicates a
very good fit of the normal distribution.

Thenormal distribution can therefore be regarded as the distribution that characterizes the growth
of women in the population studied.

• Income
Suppose we study the income of people in a certain country. We expect that the income of most
people will be average, however, there will be no people earning very little (below the minimum
salary imposed by the authorities), but there will be people earning very much (company pre‐
sidents), who are relatively few in number. In order to check whether the income of people in
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the examined country has a normal distribution, information about the income of 264 randomly
selected people was collected.

Hipotezy:

H0 : the income distribution of individuals in the study population
is a normal distribution,

H1 : the income distribution of individuals in the study population
is different than a normal distribution.

The distribution is not a normal distribution, as evidenced by all test results testing the normality
of the distribution (p < α). A positive and statistically significant (p < α) skewness value indicates
that the right tail of the function is too long. The function distribution is also more slender than
the normal distribution, but this is not a statistically significant difference (kurtosis test).
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In a quartile‐quartile plot, the deviation from the normal distribution is illustrated by right‐hand
skewness, i.e., the location of the initial and final points of the plot significantly above the line.

As a result, the data collected do not show that the incomedistribution is consistentwith a normal
distribution.

13.0.2 Multivariate normality tests

Many methods of multivariate analysis, including MANOVA, Hotelling tests, or regression models are
based on the assumption of multivariate normality. If a set of variables is characterized by a multiva‐
riate normal distribution, then each variable can be assumed to have a normal distribution. However,
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when all individual variables are characterized by a normal distribution, their set does not have to ha‐
ve a multivariate normal distribution. Therefore, testing the unidimensional normality of each variable
may be helpful, but cannot be assumed to be sufficient.
Different types of statistical analyses that assume normality are sensitive to different degrees to diffe‐
rent types of departure from this assumption. Tests that refer tomeans in their hypotheses are generally
taken as more sensitive to skewness, while tests comparing covariances depend more heavily on kur‐
tosis.

Thewindowwith the test of multivariate normality of distribution settings is opened viaStatistics→Normality
tests→Multi-dimensional normality.

Mardia’s test for multivariate normality
The test proposed byMardia in 1970 [113] and modified in 1974 [114] tests the normality of a distribu‐
tion by analyzing separately the magnitude of multivariate skewness and multivariate kurtosis. Jarque
and Bera [85] proposed combining these two Mardia measures into a single test. A similar way of com‐
bining skewness and kurtosis information into a single test is provided by the method of Hanusz and
Tarasinska [75].
Mardia defined multivariate skewness and kurtosis as follows:

skew =
1

n2

n∑
i=1

n∑
j=1

m3
ij , kurt =

1

n

n∑
i=1

m2
ii

where

mij =
(
Xi − X̄

)T
S−1

(
Xj − X̄

)
,

S = 1
n

∑n
j=1

(
Xi − X̄

) (
Xi − X̄

)T ,
X̄ ‐mean, S ‐ covariance matrix.

For data derived from a sample rather than a population, the formulas for skewness and kurtosis are
multiplied respectively: skewness by (n/(n− 1))3 and kurtosis by (n/(n− 1))2.
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Hypotheses:

H0 : population data distribution=multivariate normal distribution,
H1 : population data distribution ̸=multivariate normal distribution,

• Mardia test of skewness:When the sample is drawn fromapopulationwith amultivariate normal
distribution (null hypothesis), the test statistic is in the form of (Mardia, 1970):

χ2(M) =
n

6
skew

or with correction of exact moments for groups with smaller numbers (<20) (Mardia, 1974):

χ2
c(M) =

n

6

(n+ 1)(n+ 3)(k + 1)

n((n+ 1)(k + 1)− 6)
skew

This statistic has asymptotically (for large numbers) distribution χ2 with df = f = k(k+1)(k+2)
6

degrees of freedom.

• Mardia test of kurtosis:When the sample is drawn from a population with a multivariate normal
distribution (null hypothesis), the test statistic is in the form of (Mardia, 1974):

Z(M) =
kurt− k(k + 2)√

8k(k+2)
n

or with correction (Mardia, 1974)

Zc(M) =
(n+ 1)kurt− k(k + 2)(n− 1)√

8k(k+2)(n−3)(n−k−1)(n−k+1)
(n+3)(n+5)

This statistic has asymptotically (for large numbers) normal distribution.

The value p, determined on the basis of test statistics, for both tests i.e. of the skewness test and the
kurtosis test are compared with the significance level α :

jeżeli p ≤ α for at least one test =⇒ we rejectH0 adoptingH1,
jeżeli p > α for both tests used =⇒ there is no basis to rejectH0.

Jarque‐Bera test for multivariate normality
Jarque and Bera’s (1987) [85] test is based on the skewness and kurtosis statistics of the Mardia test.
The test statistic is in the form of:

χ2(JB) = χ2(M) + (Z(M))2

or with correction (Mardia, 1974)

χ2
c(JB) = χ2

c(M) + (Zc(M))2

This statistic has asymptotically (for large numbers)χ2 distributionwith df = f+1 degrees of freedom.

The value p, determined on the basis of test statistics, we compare with the significance level α :

if p ≤ α =⇒ we rejectH0 by adoptingH1,
if p > α =⇒ there is no basis to rejectH0.
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Hanusz‐Tarasinska test for multivariate normality
Zofia Hanusz and Joanna Tarasinska’s (2014) [75] test is based on the skewness and kurtosis statistics of
the Mardia test. The test statistic is in the form of:

tc(HT ) =
Zc(M)√

χ2
c(M)
f

The test statistic has t‐Student distribution with df = f degrees of freedom.

The value p, determined on the basis of test statistics, we compare with the significance level α :

if p ≤ α =⇒ we rejectH0 by adoptingH1,
if p > α =⇒ there are no grounds to rejectH0.

Henze‐Zirkler test for multivariate normality
Henze and Zirkler (1990) [77] proposed a test to examine multivariate normality of the distribution
extending the work of Baringhaus and Henze on the empirical characteristic function [54]. In the lite‐
rature, this test is considered one of the strongest tests dedicated to multivariate normal distribution
(Thode 2002) [161]. The test statistic has the form:

Z(HZ)β = n (4IE +Dn,βIEc)

IE and IEc are indicator functions that depend on the singularities of the covariance ma‐
trix,
Dn,β = 1

n2

∑
exp

(
−β2||Yj−Yk||2

2

)
+ (1 + 2β2)−p/2 − 2(1 + β2)−p/2

∑
exp

(
−β2||Yj ||2
2(1+β2)

)
Yi = S1/2(Xi − X̄)

β∗ = 2−1/2
(
n(2k+1)

4

)1/(k+4)
‐ optimum parameter value β

The statisticZ(HZ)β has an asymptotically (for large sizes) normal distribution based on themean and
variance described by Henze and Zirkler and read one‐sided.

The value p, determined on the basis of test statistics, we compare with the significance level α :

if p ≤ α =⇒ we rejectH0 by adoptingH1,
if p > α =⇒ there are no grounds to rejectH0.

EXAMPLE 13.2. (Iris.pqs file)
We examine the normality of the distribution for the classical data set of R.A. Fisher 1936 [58]. The
file can be found in the manual included with the program and contains measurements of the length
and width of the petals and calyx sepals for 3 varieties of iris flower. The analysis will be performed
separately for each variety.
In the analysis window, select all tests and the graph, and set a multiple filter to repeat the analysis for
each variety of iris. All the results will be returned to the same datasheet, so select Combine into one
report.

Copyright ©2010‐2023 PQStat Software – All rights reserved 148



13 NORMALITY DISTRIBUTION TESTS

All tests confirm the normality of the distribution for the versicolor and virginica varieties. For the setosa
cultivar, the test results are on the verge of statistical significance, with the Mardia test for Kurtosis and
the Henze‐Zirkler test indicating deviations from the multivariate normal distribution. We can observe
such deviations also in the first graph, where as the Mahalanobis distance increases, the points are
further and further from the straight line.
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Interval scale
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14.1 PARAMETRIC TESTS

14.1.1 The t‐test for a single sample

The single‐sample t test is used to verify the hypothesis, that an analysed sample with the mean (x)
comes from a population, where mean (µ) is a given value.

Basic assumptions:

– measurement on an interval scale,

– normality of distribution of an analysed feature.

Hypotheses:

H0 : µ = µ0,
H1 : µ ̸= µ0,

where:
µ – mean of an analysed feature of the population represented by the sample,
µ0 – a given value.

The test statistic is defined by:
t =

x− µ0

sd

√
n,

where:
sd – standard deviation from the sample,
n – sample size.

The test statistic has the t‐Student distribution with n− 1 degrees of freedom.
The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

Note
Note, that: If the sample is large and you know a standard deviation of the population, then you can
calculate a test statistic using the formula:

t =
x− µ0

σ

√
n.

The statistic calculated this way has the normal distribution. If n → ∞ t‐Student distribution converges
to the normal distributionN(0, 1). In practice, it is assumed, thatwithn > 30 the t‐Student distribution
may be approximated with the normal distribution.

Standardized effect size
The Cohen’s d determines howmuch of the variation occurring is the difference between the averages.

d =

∣∣∣∣x− µ0

sd

∣∣∣∣
When interpreting an effect, researchers often use general guidelines defined by Cohen [45] defining
small (0.2), medium (0.5) and large (0.8) effect sizes.

The settings window with the Single-sample t-test can be opened in Statistics menu→Parametric te-
sts→t-test or in Wizard.
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Note
Calculations can be based on raw data or data that are averaged like: arithmetic mean, standard devia‐
tion and sample size.

EXAMPLE 14.1. (courier.pqs file)
You want to check if the time of awaiting for a delivery by some courier company is 3 days on the
average (µ0 = 3). In order to calculate it, there are 22 persons chosen by chance from all clients of the
company as a sample. After that, there are written information about the number of days passed since
the delivery was sent till it is delivered. There are following values: (1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4,
4, 5, 5, 6, 6, 6, 7, 7).

The number of awaiting days for the delivery in the analysed population fulfills the assumption of
normality of distribution.
Hypotheses:

H0 : mean of the number of awaiting days for the delivery, which is supposed
to be delivered by the above‐mentioned courier company is 3,

H1 : mean of the number of awaiting days for the delivery, which is supposed
to be delivered by the above‐mentioned courier company is different from 3.
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Comparing the p value = 0.0881 of the t‐test with the significance level α = 0.05 we draw the conc‐
lusion, that there is no reason to reject the null hypothesis which informs that the average time of
awaiting for the delivery, which is supposed to be delivered by the analysed courier company is 3. For
the tested sample, the mean is x = 3.73 and the standard deviation is sd = 1.91.
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14.1.2 The Single‐Sample Chi‐square Test for a Population Variance

The χ2 test of the variance of a single sample is used to verify the hypothesis that the sample being
tested comes from a population for which the variance (or standard deviation σ) is a given value. At the
same time, hypotheses can refer to both the variance and equivalently the standard deviation.

Basic assumptions:

– measurement on an interval scale,

– normality of distribution of an analysed feature.

Hypotheses:

H0 : σ = σ0,
H1 : σ ̸= σ0,

where:
σ – standard deviation of a characteristic in the population represented by the sample,
σ0 – setpoint.

The test statistic is defined by:

t =
(n− 1)sd2

σ2
0

,

where:
sd – standard deviation in the sample,
n – sample size.

The test statistic has the χ2 distribution with the degrees of freedom determined by the formula: df =
n− 1.

The p value, designated on the basis of the test statistic, is compared with the

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

Whereby, if the standard deviation value is less than the setpoint, the p value is calculated as the do‐
ubled value of the area under the chi‐square distribution curve to the left of the corresponding critical
value, and if it is greater than the setpoint, it is the doubled value of the corresponding area to the
right.

he settings window with the χ2 test for variance w can be opened in Statistics menu→Parametric
tests→Chi-square test for variance.
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Note!
Calculations can be based on rawdata or data that are averaged like: standard deviation and sample size.

EXAMPLE 14.2. (dispenser.pqs file)
Before starting the production of another batch of a certain cough syrup, control measurements of the
volume of syrup poured into the bottles were made. The technical documentation of the dosing device
shows that the permissible variation in syrup volume measured by the standard deviation is 1ml. It
should be verified that the tested device is working properly.

The distribution of the volume of syrup poured into the bottles was checked (with the Lilliefors test)
obtaining a result consistent with this distribution. The analysis concerning the standard deviation can
therefore be performed with the chi‐square test for variance
Hypotheses:

H0 : the standard deviation of the volume of syrup
poured by the dosing device is 1ml,

H1 : the standard deviation of the volume of syrup
poured by the dosing device is other than 1ml.
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Comparing the p < 0.0001 value of the χ2 test with the significance level α = 0.05 we find that the
scatter of the dispensing device is different from 1ml. However, we can consider the performance of
the device as correct because the standard deviation of the sample is 0.76, which is significantly less
than the acceptable value from the technical documentation.
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14.2 NON‐PARAMETRIC TESTS

14.2.1 The Wilcoxon test (signed‐ranks)

The Wilcoxon signed‐ranks test is also known as the Wilcoxon single sample test, Wilcoxon (1945,
1949)[169]. This test is used to verify the hypothesis, that the analysed sample comes from the po‐
pulation, where median (θ) is a given value.

Basic assumptions:

– measurement on an ordinal scale or on an interval scale.

Hypotheses:

H0 : θ = θ0,
H1 : θ ̸= θ0.

where:
θ – median of an analysed feature of the population represented by the sample,
θ0 – a given value.

Now you should calculate the value of the test statisticsZ (T – for the small sample size), and based on
this p value.

The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

Note
Depending on the size of the sample, the test statistic takes a different form:

– for a small sample size
T = min

(∑
R−,

∑
R+

)
,

where:∑
R+ and

∑
R− are adequately: a sum of positive and negative ranks.

This statistic has the Wilcoxon distribution

– for a large sample size

Z =
T − n(n+1)

4√
n(n+1)(2n+1)

24 −
∑

t3−
∑

t
48

,

where:
n ‐ the number of ranked signs (the number of ranks),
t ‐ the number of cases being included in the interlinked rank.

The test statistic formula Z includes the correction for ties. This correction should be used when
ties occur (when there are no ties, the correction is not calculated, because

(∑
t3 −

∑
t
)
/48 =

0.

Z statistic asymptotically (for a large sample size) has the normal distribution.
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Continuity correction of the Wilcoxon test (Marascuilo and McSweeney (1977)[112])
A continuity correction is used to enable the test statistic to take in all values of real numbers, according
to the assumption of the normal distribution. Test statistic with a continuity correction is defined by:

Z =

∣∣∣T − n(n+1)
4

∣∣∣− 0.5√
n(n+1)(2n+1)

24 −
∑

t3−
∑

t
48

.

Standardized effect size
The distribution of the Wilcoxon test statistic is approximated by the normal distribution, which can be
converted to an effect size r = |Z/n| [?] to then obtain the Cohen’s d value according to the standard
conversion used for meta‐analyses:

d =
2r√
1− r2

When interpreting an effect, researchers often use general guidelines proposed by Cohen [45] defining
small (0.2), medium (0.5) and large (0.8) effect sizes.

The settings window with the Wilcoxon test (signed-ranks) can be opened in Statistics menu→ Non-
Parametric tests→Wilcoxon (signed-ranks) or in Wizard.

Example 14.1 cont. (courier.pqs file)

Hypotheses:

H0 : median of the number of awaiting days for the delivery, which is supposed
to be delivered by the analysed courier company is 3

H1 : median of the number of awaiting days for the delivery, which is supposed
to be delivered by the analysed courier company is different from 3
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Comparing the p‐value = 0.1232 of Wilcoxon test based on T statistic with the significance level α =
0.05 we draw the conclusion, that there is no reason to reject the null hypothesis informing us, that
usually the number of awaiting days for the delivery which is supposed to be delivered by the analysed
courier company is 3. Exactly the same decision you would make basing on the p‐value = 0.1112 or
p‐value = 0.1158 of Wilcoxon test based upon Z statistic or Z with correction for continuity.

14.2.2 The Chi‐square goodness‐of‐fit test

The χ2 test (goodnes‐of‐fit) is also called the one sample χ2 test and is used to test the compatibility
of values observed for r (r >= 2) categoriesX1, X2, ..., Xr of one featureX with hypothetical expec‐
ted values for this feature. The values of all n measurements should be gathered in a form of a table
consisted of r rows (categories: X1, X2, ..., Xr). For each category Xi there is written the frequency
of its occurenceOi, and its expected frequency Ei or the probability of its occurence pi. The expected
frequency is designated as a product of Ei = npi. The built table can take one of the following forms:

Xi categories Oi Ei

X1 O1 Ei

X2 O2 E2

... ... ...
Xr Or Er

Xi categories Oi pi
X1 O1 p1
X2 O2 p2
... ... ...
Xr Or pr
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Basic assumptions:

– measurement on a nominal scale ‐ any order is not taken into account,

– large expected frequencies (according to the Cochran interpretation (1952)[40],

– observed frequencies total should be exactly the same as an expected frequencies total, and the
total of all pi probabilities should come to 1.

Hypotheses:

H0 : Oi = Ei for all categories,
H1 : Oi ̸= Ei for at least one category.

Test statistic is defined by:

χ2 =

r∑
i=1

(Oi − Ei)
2

Ei
.

This statistic asymptotically (for large expected frequencies) has the χ2 distribution with the number of
degrees of freedom calculated using the formula: df = (r − 1).

The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

The settings window with the Chi-square test (goodness-of-fit) can be opened in Statistics menu →
NonParametric tests (unordered categories)→Chi-square (goodnes-of-fit) or in Wizard.

EXAMPLE 14.3. (dinners.pqs file )

We would like to get to know if the number of dinners served in some school canteen within a given
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frame of time (fromMonday to Friday) is statistically the same. To do this, there was taken a one‐week‐
sample and written the number of served dinners in the particular days: Monday ‐ 33, Tuesday ‐ 29,
Wednesday ‐ 32, Thursday ‐36, Friday ‐ 20.
As a result there were 150 dinners served in this canteen within a week (5 days).

We assume that the probability of serving dinner each day is exactly the same, so it comes to 1
5 . The

expected frequencies of served dinners for each day of the week (out of 5) comes toEi = 150 · 15 = 30.

Hypotheses:

H0 : the number of served dinners in the analysed school canteen within given
days (of the week) is consistent with the expected number of given out dinners these
days,

H1 : the number of served out dinners in the analysed school canteen within a given
week is not consistent with the expected number of dinners given out these days.
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The p value from the χ2 distribution with 4 degrees of freedom comes to 0.2873. So using the signifi‐
cance level α = 0.05 you can estimate that there is no reason to reject the null hypothesis that informs
about the compatibility of the number of served dinners with the expected number of dinners served
within the particular days.

Note!
If you want to make more comparisons within the framework of a one research, it is possible to use
the Bonferroni correction[2]. The correction is used to limit the size of I type error, if we compare the
observed frequencies and the expected ones between particular days, for example:
Friday⇐⇒Monday,
Friday⇐⇒ Tuesday,
Friday⇐⇒Wednesday,
Friday⇐⇒ Thursday,

Provided that, the comparisons are made independently. The significance level α = 0.05 for each com‐
parison must be calculated according to this correction using the following formula: α = 0.05

r , where
r is the number of executed comparisons. The significance level for each comparison according to the
Bonferroni correction (in this example) is α = 0.05

4 = 0.0125.

However, it is necessary to remember that if you reduce α for each comparison, the power of the test
is increased.

14.2.3 Tests for one proportion

You should use tests for proportion if there are two possible results to obtain (one of them is an distin‐
guished result with the size of m) and you know how often these results occur in the sample (we know
a p proportion). Depending on a sample size n you can choose the Z test for a one proportion – for
large samples and the exact binominal test for a one proportion – for small sample sizes . These tests
are used to verify the hypothesis that the proportion in the population, fromwhich the sample is taken,
is a given value.

Basic assumptions:
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– measurement on a nominal scale ‐ any order is not taken into account.

The additional condition for the Z test for proportion

– large frequencies (according to Marascuilo and McSweeney interpretation (1977)[112] each of
these values: np > 5 and n(1− p) > 5).

Hypotheses:

H0 : p = p0,
H1 : p ̸= p0,

where:
p – probability (distinguished proportion) in the population,
p0 – expected probability (expected proportion).

The Z test for one proportion
The test statistic is defined by:

Z =
p− p0√
p0(1−p0)

n

,

where:

p = m
n distinguished proportion for the sample taken from the population,

m – frequency of values distinguished in the sample,
n – sample size.

The test statistic with a continuity correction is defined by:

Z =
|p− p0| − 1

2n√
p0(1−p0)

n

.

The Z statistic with and without a continuity correction asymptotically (for large sizes) has the normal
distribution.

Binomial test for one proportion
The binomial test for one proportion uses directly the binomial distribution which is also called the
Bernoulli distribution, which belongs to the group of discrete distributions (such distributions, where
the analysed variable takes in the finite number of values). The analysed variable can take in k = 2
values. The first one is usually definited with the name of a success and the other one with the name of
a failure. The probability of occurence of a success (distinguished probability) is p0, and a failure 1−p0.

The probability for the specific point in this distribution is calculated using the formula:

P (m) =

(
n

m

)
pm0 (1− p0)

n−m,

where:(
n
m

)
= n!

m!(n−m)! ,

m – frequency of values distinguished in the sample,
n – sample size.
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Based on the total of appropriate probabilities P a one‐sided and a two‐sided p value is calculated, and
a two‐sided p value is defined as a doubled value of the less of the one‐sided probabilities.

The p value is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

Note
Note that, for the estimator from the sample, which in this case is the value of the p proportion, a
confidence interval is calculated. The interval for a large sample size can be based on the normal distri‐
bution ‐ so‐called Wald intervals. The more universal are intervals proposed by Wilson (1927)[172] and
by Agresti and Coull (1998)[5]. Clopper and Pearson (1934)[38] intervals are more adequate for small
sample sizes.
Comparison of interval estimation methods of a binomial proportion was published by Brown L.D et al
(2001)[29]

The settingswindowwith theZ test for one proportion canbeopened inStatisticsmenu→NonParametric
tests (unordered categories)→Z for proportion.

EXAMPLE 14.3 cont. (dinners.pqs file)
Assume, that you would like to check if on Friday 1

5 of all the dinners during the whole week are served.
For the chosen samplem = 20, n = 150.
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Select the options of the analysis and activate a filter selecting the appropriate day of the week – Friday.
If you do not activate the filter, no error will be generated, only statistics for given weekdays will be
calculated.

Hypotheses:

H0 : on Friday, in a school canteen there are served 1
5 out of all dinners which are served

within a week,
H1 : on Friday, in a school canteen there are significantly more than 1

5 or less than 1
5

dinners out of all the dinners served within a week in this canteen.

The proportion of the distinguished value in the sample is p = m
n = 0.133 and 95% Clopper‐Pearson

confidence interval for this fraction (0.083, 0.198) does not include the hypothetical value of 0.2.

Based on the Z test without the continuity correction (p‐value = 0.0412) and also on the basis of the
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exact value of the probability calculated from the binomial distribution (p‐value = 0.0447) you can as‐
sume (on the significance level α = 0.05), that on Friday there are statistically less than 1

5 dinners
served within a week. However, after using the continuity correction it is not possible to reject the null
hypothesis p‐value = 0.0525).
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15.1 PARAMETRIC TESTS

15.1.1 The Fisher‐Snedecor test

The F‐Snedecor test is based on a variableF which was formulated by Fisher (1924), and its distribution
was described by Snedecor. This test is used to verify the hypothesis about equality of variances of an
analysed variable for 2 populations.

Basic assumptions:

• measurement on an interval scale,

• normality of distribution of an analysed feature in both populations,

• an independent model.

Hypotheses:

H0 : σ2
1 = σ2

2,
H1 : σ2

1 ̸= σ2
2,

where:
σ2
1 , σ2

2 – variances of an analysed variable of the 1st and the 2nd population.

The test statistic is defined by:

F =
sd21
sd22

,

where:
sd21, sd22 – variances of an analysed variable of the samples chosen randomly from the 1st
and the 2nd population.

The test statistic has the F Snedecor distribution with n1 − 1 and n2 − 1 degrees of freedom.

The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

The settings window with the Fisher-Snedecor test can be opened in Statistics menu→Parametric
tests→F Fisher Snedecor.
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Note!
Calculations can be based on raw data or data that are averaged like: arithmetic means, standard de‐
viations and sample sizes.

15.1.2 The t‐test for independent groups

The t‐test for independent groups is used to verify the hypothesis about the equality of means of an
analysed variable in 2 populations.

Basic assumptions:

– measurement on an interval scale,

– normality of distribution of an analysed feature in both populations,

– an independent model,

– equality of variances of an analysed variable in 2 populations.

Hypotheses:
H0 : µ1 = µ2,
H1 : µ1 ̸= µ2.

where:
µ1, µ2 – means of an analysed variable of the 1st and the 2nd population.

The test statistic is defined by:

t =
x1 − x2√

(n1 − 1)sd21 + (n2 − 1)sd22
n1 + n2 − 2

(
1

n1
+

1

n2

) ,
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where:
x1, x2 – means of an analysed variable of the 1st and the 2nd sample,
n1, n2 – the 1st and the 2nd sample size,
sd21, sd

2
2 – variances of an analysed variable of the 1st and the 2nd sample.

The test statistic has the t‐Student distribution with df = n1 + n2 − 2 degrees of freedom.
The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

Note:

• pooled standard deviation is defined by:

SDp =

√
(n1 − 1)sd21 + (n2 − 1)sd22

n1 + n2 − 2
,

• standard error of difference of means is defined by:

SEx1−x2 =

√
(n1 − 1)sd21 + (n2 − 1)sd22

n1 + n2 − 2

(
1

n1
+

1

n2

)
.

Standardized effect size
The Cohen’s d determines howmuch of the variation occurring is the difference between the averages.

d =

∣∣∣∣x1 − x2
SDp

∣∣∣∣
When interpreting an effect, researchers often use general guidelines proposed by Cohen [45] defining
small (0.2), medium (0.5) and large (0.8) effect sizes.

15.1.3 The t‐test with the Cochran‐Cox adjustment

The Cochran‐Cox adjustment relates to the t‐test for independent groups (1957)[42] and is calculated
when variances of analysed variables in both populations are different.
The test statistic is defined by:

t =
x1 − x2√
sd21
n1

+
sd22
n2

.

The test statistic has the t‐Student distribution with degrees of freedom proposed by Satterthwaite
(1946)[143] and calculated using the formula:

df =

(
sd21
n1

+
sd22
n2

)2
(
sd21
n1

)2
· 1
(n1−1) +

(
sd22
n2

)2
· 1
(n2−1)

.

The settingswindowwith the t- test for independent groups canbeopened inStatisticsmenu→Parametric
tests→t-test for independent groups or in Wizard.
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If, in the window which contains the options related to the variances, you have choosen:

– equal, the t‐test for independent groups will be calculated ,

– different, the t‐test with the Cochran‐Cox adjustment will be calculated,

– check equality, to calculate the Fisher‐Snedecor test, basing on its result and set the level of
significance, the t‐test for independent groups with or without the Cochran‐Cox adjustment will
be calculated.

Note
Calculations can be based on raw data or data that are averaged like: arithmetic means, standard de‐
viations and sample sizes.

EXAMPLE 15.1. (cholesterol.pqs file)
Five hundred subjects each were drawn from a population of women and a population of men over
40 years of age. The study concerned the assessment of cardiovascular disease risk. Among the para‐
meters studied is the value of total cholesterol. The purpose of this study will be to compare men and
women as to this value. We want to show that these populations differ on the level of total cholesterol
and not only on the level of cholesterol broken down into its fractions.

The distribution of age in both groups is a normal distribution (this was checked with the Lilliefors
test). The mean cholesterol value in the male group was x1 = 201.1 and the standard deviation sd1 =
47.6, in the female group x2 = 191.5 and sd2 = 43.5 respectively. The Fisher‐Snedecor test indicates
small but statistically significant (p = 0.0434) differences in variances. The analysiswill use the Student’s
t‐test with Cochran‐Cox correction

Hypotheses:
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H0 : The average total cholesterol of the female population is different from
the average total cholesterol of the male population,

H1 : The average total cholesterol of the female population equals
the average total cholesterol of the male population.
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Comparing p = 0.0009 with a significance level α = 0.05 we find that women and men in Poland have
statistically significant differences in total cholesterol values. The average Polish man over the age of 40
has higher total cholesterol than the average Polish woman by almost 10 units.

15.1.4 The t‐test for dependent groups

The t‐test for dependent groups is used when the measurement of an analysed variable you do twice,
each time in different conditions (but you should assume, that variances of the variable in both measu‐
rements are pretty close to each other). We want to check how big is the difference between the pairs
of measurements (di = x1i−x2i). This difference is used to verify the hypothesis informing us that the
mean of the difference in the analysed population is 0.

Basic assumptions:

– measurement on an interval scale,

– normality of distribution of measurements di (or the normal distribution for an analysed variable
in each measurement),

– a dependent model.

Hypotheses:

H0 : µ0 = 0,
H1 : µ0 ̸= 0,

where:
µ0, – mean of the differences di in a population.

The test statistic is defined by:

t =
d

sdd

√
n,
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where:
d – mean of differences di in a sample,
sdd – standard deviation of differences di in a sample,
n – number of differences di in a sample.

Test statistic has the t‐Student distribution with n− 1 degrees of freedom.
The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

Note

• standard deviation of the difference is defined by:

sdd =

√∑n
i=1(di − d)2

n− 1
,

• standard error of the mean of differences is defined by:

SEMd =
SDd√

n
.

Standardized effect size
The Cohen’s d determines howmuch of the variation occurring is the difference between the averages,
while taking into account the correlation of the variables.

d =
dz√
1− rp

,

where:
dz =

∣∣∣ d
sdd

∣∣∣,
rp ‐ the Pearson product‐moment correlation coefficient.

When interpreting an effect, researchers often use general guidelines proposed by Cohen [45] defining
small (0.2), medium (0.5) and large (0.8) effect sizes.

The settingswindowwith the t-test for dependent groups canbeopened inStatisticsmenu→Parametric
tests→t-test for dependent groups or in Wizard.
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Note
Calculations can be based on raw data or data that are averaged like: arithmetic mean of difference,
standard deviation of difference and sample size.

EXAMPLE 15.2. (BMI.pqs file)
A clinic treating eating disorders studied the effect of a recommended ”diet A” on weight change. A
sample of 120 obese patients were put on the diet. Their BMI levels were measured twice: before the
diet and after 180 days of the diet. To test the effectiveness of the diet, the obtained BMImeasurements
were compared.

Hypotheses:

H0 : Mean BMI values do not change with diet,
H1 : Mean BMI values change as a result of diet.
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Comparing p < 0.0001 with a significance level α = 0.05 we find that the mean BMI level changed
significantly. Before the diet, it was higher by less than 2 units on average.

The study was able to use the Student’s t‐test for dependent groups because the distribution of the
difference between pairs of measurements was a normal distribution (Lilliefors test, p = 0.0837).
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15.2 NON‐PARAMETRIC TESTS

15.2.1 The Mann‐Whitney U test

TheMann‐WhitneyU test is also called as theWilcoxonMann‐Whitney test (MannandWhitney (1947)[108]
and Wilcoxon (1949)[171]). This test is used to verify the hypothesis that there is no shift in the com‐
pared distributions, i.e., most often the insignificance of differences between medians of an analysed
variable in 2 populations (but you should assume that the distributions of a variable are pretty similar
to each other ‐ comparison of rank variances can be performed with the Conover rank test).

Basic assumptions:

– measurement on an ordinal scaleor on an interval scale,

– an independent model.

Hypotheses:

H0 : ϕ1 = ϕ2,
H1 : ϕ1 ̸= ϕ2,

where:
ϕ1, ϕ2 distributions of an analysed variable of the 1st and the 2nd population.

The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

Note
Depending on a sample size, the test statistic is calculated using by different formulas:

• For a small sample size:

U = n1n2 +
n1(n1 + 1)

2
−R1,

or
U ′ = n1n2 +

n2(n2 + 1)

2
−R2,

where n1, n2 are sample sizes,R1, R2 are rank sums for the samples.

This statistic has the Mann‐Whitney distribution and it does not contain any correction for ties.
The value of the exact probability of the Mann‐Whitney distribution is calculated with the accu‐
racy up to the hundredth place of the fraction.

• For a large sample size:

Z =
U − n1n2

2√
n1n2(n1+n2+1)

12 − n1n2
∑

(t3−t)
12(n1+n2)(n1+n2−1)

,

where:
U can be replaced with U ′,
t – number of cases included in a tie.

The formula for the Z statistic includes the correction for ties. This correction is used, when ties
occur (if there are no ties, the correction is not calculated, because of n1n2

∑
(t3−t)

12(n1+n2)(n1+n2−1) = 0)

The Z statistic asymptotically (for large sample sizes) has the normal distribution.
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The Mann‐Whitney test with the continuity correction (Marascuilo and McSweeney (1977)[112])

The continuity correction should be used to guarantee the possibility of taking in all the values of real
numbers by the test statistic, according to the assumption of the normal distribution. The formula for
the test statistic with the continuity correction is defined as:

Z =

∣∣U − n1n2
2

∣∣− 0.5√
n1n2(n1+n2+1)

12 − n1n2
∑

(t3−t)
12(n1+n2)(n1+n2−1)

.

Standardized effect size
The distribution of the Mann‐Whitney test statistic is approximated by the normal distribution, which
can be converted to an effect size r = |Z/(n1 + n2)| [?] to then obtain the Cohen’s d value according
to the standard conversion used for meta‐analyses:

d =
2r√
1− r2

When interpreting an effect, researchers often use general guidelines proposed by Cohen [45] defining
small (0.2), medium (0.5) and large (0.8) effect sizes.

The settings window with the Mann-Whitney U test can be opened in Statistics menu → NonPara-
metric tests (ordered categories) → Mann-Whitney or in Wizard.

EXAMPLE 15.3. (computer.pqs file)
There was made a hypothesis that at some university male math students spend statistically more time
in front of a computer screen than the female math students. To verify the hypothesis from the popula‐
tion of people who study math at this university, there was drawn a sample consisting of 54 people (25
women and 29 men). These persons were asked how many hours they spend in front of the computer
screens daily. There were obtained the following results:
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(time, sex): (2, k) (2, m) (2, m) (3, k) (3, k) (3, k) (3, k) (3, m) (3, m) (4, k) (4, k) (4, k) (4, k) (4, m) (4, m) (5,
k) (5, k) (5, k) (5, k) (5, k) (5, k) (5, k) (5, k) (5, k) (5, m) (5, m) (5, m) (5, m) (6, k) (6, k) (6, k) (6, k) (6, k)
(6, m) (6, m) (6, m) (6, m) (6, m) (6, m) (6, m) (6, m) (7, k) (7, m) (7, m) (7, m) (7, m) (7, m) (7, m) (7, m)
(7, m) (7, m) (8, k) (8, m) (8, m).
Hypotheses:

H0 : the median of the time spent in front of a computer screen is exactly the same both
in the male and the female population of students, at the analysed university,

H1 : the median of the time spent in front of a computer screen is different among the
male population and the female population of students, at the analysed university.
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Based on the assumed α = 0.05 and the Z statistic of the Mann‐Whitney test without correction for
continuity (p=0.0154) as well as with this correction p = 0.0158, as well as on the exact U statistic
(p=0.0149) we can assume that there are statistically significant differences between female and male
math students in the amount of time spent in front of the computer. These differences are that female
students spend less time in front of the computer than male students. They can be described by the
median, quartiles, and the largest and smallest value, which we also see in a box‐and‐whisker plot.
Anotherway to describe the differences is to represent the time spent in front of the computer based on
a table of counts and percentages (which we run in the analysis window by setting descriptive statistics

includegraphics ) or based on a column plot.
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15.2.2 The Wilcoxon test (matched‐pairs)

The Wilcoxon matched‐pairs test, is also called as the Wilcoxon test for dependent groups (Wilcoxon
1945[?],1949[?]). It is used if the measurement of an analysed variable you do twice, each time in
different conditions. It is the extension for the two dependent samples of the Wilcoxon test (signed‐
ranks) – designed for a one sample. We want to check how big is the difference between the pairs of
measurements (di = x1i − x2i) for each of i analysed objects. This difference is used to verify the
hypothesis determining that the median of the difference in the analysed population counts to 0.

Basic assumptions:

– measurement on an ordinal scale or on an interval scale,

– a dependent model.

Hypotheses:

H0 : θ0 = 0,
H1 : θ0 ≠ 0,

where:
θ0 – median of the differences di in a population.

The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

Note
Depending on the sample size, the test statistic is calculated by using different formulas:

• For small a sample size:
T = min

(∑
R−,

∑
R+

)
,
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where:∑
R+ – sums of positive ranks,∑
R− – sums of negative ranks.

This statistic has the Wilcoxon distribution and does not contain any correction for ties.

• For a large sample size

Z =
T − n(n+1)

4√
n(n+1)(2n+1)

24 −
∑

t3−
∑

t
48

,

where:
n – number of ranked signs (number of the ranks),
t – number of the cases included in a tie.

The formula for the Z statistic includes the correction for ties. This correction is used, when the
ties occur (if there are no ties, the correction is not calculated, because of

∑
t3−

∑
t

48 = 0).

The Z statistic (for large sample sizes) asymptotically has the normal distribution.

The Wilcoxon test with the continuity correction (Marascuilo and McSweeney (1977)[112])

The continuity correction is used to guarantee the possibility of taking in all the values of the real num‐
bers by the test statistic, according to the assumption of the normal distribution. The test statistic with
the continuity correction is defined by:

Z =

∣∣∣T − n(n+1)
4

∣∣∣− 0.5√
n(n+1)(2n+1)

24 −
∑

t3−
∑

t
48

.

Note
The median calculated for the difference column includes all pairs of results except those with a diffe‐
rence of 0.
Standardized effect size
The distribution of the Wilcoxon test statistic is approximated by the normal distribution, which can be
converted to an effect size r = |Z/n| [?] to then obtain the Cohen’s d value according to the standard
conversion used for meta‐analyses:

d =
2r√
1− r2

When interpreting an effect, researchers often use general guidelines proposed by Cohen [45] defining
small (0.2), medium (0.5) and large (0.8) effect sizes.

The settings window with the Wilcoxon test for dependent groups can be opened in Statistics menu
→ NonParametric tests→Wilcoxon (matched-pairs) or in Wizard.
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EXAMPLE 15.4. (pain.pqs file)
There was chosen a sample consisting of 22 patients suffering from a cancer. They were examined to
check the level of felt pain (1 – 10 scale, where 1 means the lack of pain and 10 means unbearable
pain). This examination was repeated after a month of the treatment with a new medicine which was
supposed to lower the level of felt pain. There were obtained the following results:
(pain before, pain after): (2, 2) (2, 3) (3, 1) (3,1) (3, 2) (3, 2) (3, 3) (4, 1) (4, 3) (4, 4) (5, 1) (5, 1) (5, 2) (5,
4) (5, 4) (6, 1) (6, 3) (7, 2) (7, 4) (7, 4) (8, 1) (8, 3).
Now, you want to check if this treatment has any influence on the level of felt pain in the population,
from which the sample was chosen.
Hypotheses:

H0 : the median of the differences between the level of pain before and after a month
of treatment in the analysed population comes to 0,

H1 : the median of the differences between the level of pain before and after a month
of treatment in the analysed population is different from 0.

Comparing the p value = 0.0001 of the Wilcoxon test, based on the T statistic, with the significance
level α = 0.05 you assume, that there is a statistically significant difference if concerning the level of
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felt pain between these 2 examinations. The difference is, that the level of pain decreased (the sum of
the negative ranks is significantly greater than the sum of the positive ranks). Exactly the same decision
you would make on the basis of p value = 0.00021 or p value = 0.00023 of the Wilcoxon test which is
based on the Z statistic or the Z statistic with the continuity correction. We can see the differences in
a box‐and‐whisker plot or a column plot.

15.2.3 The Chi‐square tests

These tests are based on data collected in the form of a contingency table of 2 traits, trait X and trait
Y, the former having r and the latter c categories, so the resulting table has r rows and c columns.
Therefore, we can speak of the 2x2 chi‐square test (for tables with two rows and two columns) or the
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RxC chi‐square test (with multiple rows and columns). (See table (10.1)).

We can read the details of the chi‐square test of the two features here:
chi‐square test 2x2
chi‐square test RxC.

Basic assumptions:

– measurement on a nominal scale ‐ any order is not taken into account,

– an independent model.

The additional assumption for the χ2 :

– large expected frequencies (according to Cochran interpretation (1952)[40].

• General hypotheses:

H0 : Oij = Eij for all categories,
H1 : Oij ̸= Eij for at least one category,

where:
Oij – observed frequencies in a contingency table,
Eij – expected frequencies in a contingency table.

• Hypotheses in the meaning of independence:

H0 : there is no dependence between the analysed features of the population (both
classifications are statistically independent according toX and Y feature),

H1 : there is a dependence between the analysed features of the population.

Compare the p value, calculated on the basis of the test statistic, with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

Additionally

– In addition to the chi‐square test, another related test may need to be determined. In the event
that Cochran’s condition is not satisfied, one can determine:
Fisher’s exact test for RxC tables
Fisher’s exact test for 2x2 tables
chi‐square test with Yates correction
mid‐p test for 2x2 tables.

– If we obtain a table of Rx2, and the R categories can be ordered, it is possible to determine the
trend:
chi‐square test for trend for Rx2 tables

– When significant relationships or differences are found based on a test performed on a table
larger than 2x2, then multiple comparisons can be performed with appropriate correction of the
multiple comparisons to locate the location of these relationships/differences. This correction can
be done automatically when the table hasmany columns. In such case, in test optionwindow you
should select Multiple column comparisons (RxC).
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– In the case where we want to describe the strength of the relationship between feature X and
feature Y, we can determine:
measures of dependence

– In the case when we want to describe for 2x2 tables the effect size showing the impact of a risk
factor, we can determine:
Odds Ratio (OR) and Relative Risk (RR).

15.2.4 The Chi‐square test for large tables

These tests are based on the data gathered in the form of a contingency table of 2 features (X , Y ). One
of them has possible r categories X1, X2, ..., Xr and the other one c categories Y1, Y2, ..., Yc (look at
the table (10.1)).

The χ2 test for r× c tables is also known as the Pearson’s Chi‐square test (Karl Pearson 1900). This test
is an extension on 2 features of the χ2 test (goodness‐of‐fit).
The test statistic is defined by:

χ2 =

r∑
i=1

c∑
j=1

(Oij − Eij)
2

Eij
.

This statistic asymptotically (for large expected frequencies) has the χ2 distribution with a number of
degrees of freedom calculated using the formula: df = (r − 1)(c− 1).

Compare the p value, calculateld on the basis of the test statistic, with the significance level α.

The settings windowwith the Chi-square test (RxC) can be opened in Statistics menu→ NonParame-
tric tests → Chi-square, Fisher, OR/RR or in Wizard
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EXAMPLE 15.5. (country‐education.pqs file)
There is a sample of 605 persons (n = 605), who had 2 features analysed for (X=country of residence,
Y =education). The first feature occurrs in 4 categories, and the second one in 3 categories (X1=Country
1,X2=Country 2,X3=Country 3,X4=Country 4, Y1=primary, Y2=secondary, Y3=higher). The data distri‐
bution is shown below, in the contingency table:

Based on this sample, you would like to find out if there is any dependence between education and
country of residence in the analysed population.
Hypotheses:

H0 : there is no dependence between education and country of residence
in the analysed population,

H1 : there is a dependence between education and country of residence
in the analysed population.
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Cochran’s condition is satisfied.

The p value = 0.0006. So, on the basis of the significance level α = 0.05 we can draw the conclusion
that there is a dependence between education and country of residence in the analysed population.

If we are interested in more precise information about the detected dependencies, we will obtain it by
determining multiple comparisons through the options Fisher, Yates and others... and then Multiple
column comparisons (RxC) and one of the corrections e.g. Benjamini-Hochberg

A closer look reveals that only the second country differs from the other countries in educational atta‐
inment in a statistically significant way.

15.2.5 The Fisher’s test for large tables

The Fisher test for r × c tables is also called the Fisher‐Freeman‐Halton test (Freeman G.H., Halton
J.H. (1951)[62]). This test is an extension on r × c tables of the Fisher’s exact test. It defines the exact
probability of an occurrence specific distribution of numbers in the table (when we know n and we set
the marginal totals).
If you define marginal sums of each row as:

Wi =
c∑

j=1

Oij ,
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where:
Oij – observed frequencies in a table,

and the marginal sums of each column as:

Ki =

r∑
i=1

Oij .

then, having defined the marginal sums for the different distributions of the observed frequencies re‐
presented by Uij , you can calculate the P probabilities:

P =
D−1

∏c
j=1Kj !

U1j !U2j ! . . . Urj
,

where
D =

(W1 +W2 + . . .+Wr)!

W1!W2! . . .Wr!
.

The exact significance level p: is the sum of P probabilities (calculated for new values Uij), which are
smaller or equal to P probability of the table with the initial numbers Oij .

The exact p value is compared with the significance level α.

The settings window with the Fisher exact test (RxC) can be opened in Statistics menu→ NonPara-
metric tests → Chi-square, Fisher, OR/RR or in Wizard.

Info.
Theprocess of calculationof p values for this test is basedon the algorithmpublishedbyMehta (1986)[117].
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EXAMPLE 15.6. (job prevention.pqs file)
In the population of people living in the rural areas of Komorniki municipality it was examined whether
the performance of preventive health examinations depends on the type of occupational activity of the
residents. A random sample of 120 people was collected and asked about their education and whether
they perform preventive examinations. Complete answers were obtained from 113 persons.

Hypotheses:

H0 : there is no correlation between performance of preventive examinations
and the type of work performed by the residents of rural areas of the Komorniki commune,

H1 : there is a correlation between performance of preventive examinations
and the type of work performed by the residents of rural areas of the Komorniki commune.
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Cochran’s condition is not satisfied, thus we should not use the chi‐square test.

Value p < 0.0001. Therefore, at the significance level α = 0.05 we can say that there is a relationship
between the performance of preventive examinations and the type of work performed by residents of
rural areas of Komorniki municipality.

If we are interested in more precise information about the correlations detected, we will obtain it by
determining multiple comparisons through the options Fisher, Yates and others... and then Multiple
column comparisons (RxC) and one of the corrections e.g. Benjamini-Hochberg.

A closer analysis allows us to conclude that health professionals perform preventive examinations si‐
gnificantly more often than the other groups (100% of people in this group performed examinations),
and the unemployed significantly less often (no one in this group performed an examination). Farmers,
othermanualworkers and otherwhite‐collarworkers take preventive examinations in about 50%,which
means that these three groups are not statistically significantly different from each other. Part of the
p‐values obtained in the table is marked with an asterisk, it denotes those results which were obta‐
ined by using the Fisher’s exact test with Benjamini‐Hochberg correction, values not marked with an
asterisk are the results of the chi‐square test with Benjamini‐Hochberg correction, in which Cochran’s
assumptions were fulfilled.

15.2.6 The Chi‐square test for small tables

These tests are based on the data gathered in the form of a contingency table of 2 features (X , Y ), each
of them has 2 possible categoriesX1, X2 and Y1, Y2 (look at the table (10.1)).
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The χ2 test for 2× 2 tables – The Pearson’s Chi‐square test (Karl Pearson 1900) is constraint of the χ2

test for r × c tables.

The test statistic is defined by:

χ2 =

2∑
i=1

2∑
j=1

(Oij − Eij)
2

Eij
.

This statistic asymptotically (for large expected frequencies) has the χ2 distribution with a 1 degree of
freedom.

The settingswindowwith theChi-square test (2x2) canbeopened inStatisticsmenu→NonParametric
tests→Chi-square, Fisher, OR/RR or in Wizard.

EXAMPLE 15.7. (sex‐exam.pqs file)
There is a sample consisting of 170 persons (n = 170). Using this sample, you want to analyse 2 featu‐
res (X=sex, Y =exam passing). Each of these features occurs in two categories (X1=f, X2=m, Y1=yes,
Y2=no). Based on the sample youwant to get to know, if there is any dependence between sex and exam
passing in the above population. The data distribution is presented in the contingency table below:

Observed frequencies exam passing
Oij yes no total

sex
f 50 40 90
m 20 60 80

total 70 100 170

Hypotheses:

H0 : there is no dependence between sex and exam passing in the analysed population,
H1 : there is a dependence between sex and exam passing in the analysed population.
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The expectation count table contains no values less than 5. Cochran’s condition is satisfied.

At the assumed significance level of α = 0.05 all tests performed confirmed the truth of the alternative
hypothesis:

• chi‐square test, p = 0.000053,
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• chi‐square test with Yeates correction, p = 0.000103,

• Fisher’s exact test, p = 0.000083,

• mid‐p test, p = 0.000054.
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15.2.7 The Chi‐square test corrections for small tables

These tests are based on data collected in the form of a contingency table of 2 features (X , Y ), each of
which has possible 2 categoriesX1, X2 and Y1, Y2 (look at the table(10.1)).

The Chi‐square test with the Yate’s correction for continuity

The χ2 test with the Yate’s correction (Frank Yates (1934)[174]) is a more conservative test than the χ2

test (it rejects a null hypothesis more rarely than the χ2 test). The correction for continuity guarantees
the possibility of taking in all the values of real numbers by a test statistic, according to the χ2 distribu‐
tion assumption.
The test statistic is defined by:

χ2 =
2∑

i=1

2∑
j=1

(|Oij − Eij | − 0.5)2

Eij
.

The Fisher test for 2× 2 tables

The Fisher test for 2 × 2 tables is also called the Fisher exact test (R. A. Fisher (1934)[56], (1935)[57]).
This test enables you to calculate the exact probability of the occurrence of the particular number di‐
stribution in a table (knowing n and defined marginal sums.

P =

(
O11+O21

O11

)(
O12+O22

O12

)(
O11+O12+O21+O22

O11+O12

) .
If you know each marginal sum, you can calculate the P probability for various configurations of obse‐
rved frequencies. The exact p significance level is the sum of probabilities which are less or equal to the
analysed probability.

The mid‐p test
Themid‐p is the Fisher exact test correction. Thismodified p value is recommendedbymany statisticians
(Lancaster 1961[95], Anscombe 1981[9], Pratt and Gibbons 1981[133], Plackett 1984[132], Miettinen
1985[118] and Barnard 1989[15], Rothman 2008[138]) as a method used in decreasing the Fisher exact
test conservatism. As a result, using the mid‐p the null hypothesis is rejected much more qucikly than
by using the Fisher exact test. For large samples a p value is calculated by using the χ2 test with the
Yate’s correction and the Fisher test gives quite similar results. But a p value of the χ2 test without any
correction corresponds with the mid‐p.

The p value of the mid‐p is calculated by the transformation of the probability value for the Fisher exact
test. The one‐sided p value is calculated by using the following formula:

pI(mid−p) = pI(Fisher) − 0.5 · Ppunktu(tabeli zadanej),

where:
pI(mid−p) – one‐sided p value of mid‐p,
pI(Fisher) – one‐sided p value of Fisher exact test,

and the two‐sided p value is defined as a doubled value of the smaller one‐sided probability:

pII(mid−p) = 2pI(mid−p),

where:
pII(mid−p) – two‐sided p value of mid‐p.

The settings window with the chi-square test and its corrections can be opened in Statistics menu→
NonParametric tests→Chi-square, Fisher, OR/RR or in Wizard.
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15.2.8 The Chi‐square test for trend

Theχ2 test for trend (also called the Cochran‐Armitage trend test[41][10]) is used to determinewhether
there is a trend in proportion for particular categories of an analysed variables (features). It is based on
the data gathered in the contingency tables of 2 features. The first feature has the possible r ordered
categories:X1, X2, ..., Xr and the second one has 2 categories:G1,G2 (table (15.1)).
Tabela 15.1. The contingency table of r × 2 observed frequencies

Observed frequencies Feature 2 (group)
Oij G1 G2 Total

Feature 1 (featureX)

X1 O11 O12 W1 = O11 +O12

X2 O21 O22 W2 = O21 +O22

... ... ... ...
Xr Or1 Or2 Wr = Or1 +Or2

Total C1 =
∑r

i=1Oi1 C2 =
∑r

i=1Oi2 n = C1 + C2

Basic assumptions:

− measurement on an ordinal scale or on an interval scale,

− an independent model (the second feature− 2 independent groups).

Hypotheses:

H0 : In the analysed population the trend in a proportion of p1, p2, ..., pr does not exist,
H1 : There is the trend in a proportion of p1, p2, ..., pr in the analysed population.

where:
p1, p2, ..., pr are the proportions p1 = O11

W1
, p2 = O21

W2
,..., pr = Or1

Wr
.

The test statistic is defined by:

χ2 =

[
(
∑r

i=1 i ·Oi1)− C1

(∑r
i=1

i·Wi
n

)]2
C1
n

(
1− C1

n

) [
(
∑n

i=1 i
2Wi)− n

(∑n
i=1

i·Wi
n

)2] .
This statistic asymptotically (for large expected frequencies) has the χ2 distribution with 1 degree of
freedom.

The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

The settings window with the Chi-square test for trend can be opened in Statistics menu → NonPa-
rametric tests → Chi-square, Fisher, OR/RR → Chi-square for trend.
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EXAMPLE 15.8. (smoking‐education.pqs file)
We examine whether cigarette smoking is related to the education of residents of a village. A sample of
122 people was drawn. The data were recorded in a file.

We assume that the relationship can be of two types i.e. the more educated people, the more
often they smoke or the more educated people, the less often they smoke. Thus, we are looking for an
increasing or decreasing trend.

Before proceeding with the analysis, we need to prepare the data, i.e., we need to indicate the order in
which the education categories should appear. To do this, from the properties of the Education variable,
we select Codes/Labels/Format... and assign the order by specifying consecutive natural numbers. We
also assign labels.

Hypotheses:

H0 : there is no trend in the rural population of increasing/decreasing
wraz ze wzrostem wykształcenia,

H1 : there is a trend in the rural population of increasing/decreasing
numbers of smokers with increasing education.
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A value of p = 0.0091, which compared to a significance level of α=0.05 indicates that the alternative
hypothesis that a trend exists is true.

As the graph shows, the more educated people are, the less often they smoke. However, the result
obtained by people with junior high school education deviates from this trend. Since there are only two
people with lower secondary school education, it did not have much influence on the trend. Due to the
very small size of this group, it was decided to repeat the analysis for the combined primary and lower
secondary education categories.

A small value was again obtained p = 0.0078 and confirmation of a statistically significant trend.

EXAMPLE 15.9. (viewers.pqs file)
Because of the decrease in people watching some particular soap opera there was carried out an opi‐
nion survey. 100 persons were asked, who has recently started watching this soap opera, and 300 per‐
sons were asked, who has watched it regularly from the beginning. They were asked about the level of
preoccupation with the character’s life. The results are written down in the table below:
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Level of group
commitment group of new viewers group of steady viewers total
rather small 7 7 14
average 13 25 38

rather high 30 58 88
high 24 99 123

very high 26 111 137
total 100 300 400

The new viewers consist of 25% of all the analysed viewers. This proportion is not the same for each
level of commitment, but looks like this:

Level of group
commitment group of new viewers group of steady viewers total
rather small p1=50.00% 50.00% 100%
average p2=34.21% 65.79% 100%

rather high p3=34.09% 65.91% 100%
high p4=19.51% 80.49% 100%

very high p5=18.98% 81.02% 100%
total 25.00% 75.00% 100%

Hypotheses:

H0 : in the population of the soap opera viewers, the trend in proportions of
p1, p2, p3, p4, p5 does not exist,

H1 : in the population of the soap opera viewers, the trend in proportions of
p1, p2, p3, p4, p5 does exists.
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The p − value = 0.0004 which, compared to the significance level α=0.05, proves the truth of the
alternative hypothesis that there is a trend in the proportions p1, p2, ..., p5. As can be seen from the
contingency table of the percentages calculated from the sum of the columns, this is a decreasing trend
(the more interested the group of viewers is in the fate of the characters of the series, the smaller part
of it is made up of new viewers).

15.2.9 The Relative Risk and the Odds Ratio

The risk and odds designation of occurence an analysed phenomenon, on the basis of exposure to the
factor that can cause it, is estimated according to data collected in the contingency table 2 × 2. For
example, we can look at how cigarette smoking affects disease:

The window with the ability to determine these measures is called up via the menu can be opened in
Statisticsmenu→NonParametric tests→chi-square, Fiser, OR/RR by selectingOR/RR or inWizard.

Copyright ©2010‐2023 PQStat Software – All rights reserved 200



15 COMPARISON ‐ TWO GROUPS

If a study is a case‐control study, the odds ratio of occurence the phenomenon is calculated for the
table. Usually, they are retrospective studies – the researcher decides on his own about the sample
size, with the phenomenon, and about the control sample (without the phenomenon).

If a study is a cohort study, the relative risk of occurence the phenomenon is calculated for the table.
Usually, they are prospective studies – the researcher cares about experiment conditions, because of
the structure of an analysed phenomenon in a sample and in a population should be similar.

The odds ratio (2× 2 table)

For the designation of odds ratio, we calculate the probability of being a case in the exposed group and
in the unexposed group, according to the formulas:

oddsexposed =
O11/(O11 +O12)

O12/(O11 +O12)
=

O11

O12
,

oddsunexposed =
O21/(O21 +O22)

O22/(O21 +O22)
=

O21

O22
.

The Odds Ratio:
OR =

O11/O12

O21/O22
=

O11O22

O12O21
.

The test of significance for theOR
This test is used to the hypothesis verification about the odds of occurence the analysed pheno‐
menon is the same in the group of exposed and unexposed to the risk factor.
Hypotheses:

H0 : OR = 1,
H1 : OR ̸= 1.

The test statistic is defined by:

z =
ln(OR)

SE
,

where:
SE =

√
1

O11
+ 1

O12
+ 1

O21
+ 1

O22
– standard error of the ln(OR).
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The test statistic asymptotically (for large sample size) has the normal distribution.

The p value, designated on the basis of the test statistic, is compared with the significance level
α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

Note
In the interpretation of odds ratio significance, we usually use the designated confidence interval.
Then, we check if the interval contains the value of 1.

The relative risk (2× 2 table)

In the cohort study, we can designate the risk of occurence the analysed phenomenon (because the
structure of phenomenon, in the sample, should come closer to the population, fromwhich the sample
was taken) and calculate the relative risk (RR).
The estimated risk of occurence the analysed phenomenon is designated by the following formulaR =
O11+O21

n . However, the relative risk is designated by:

RR =
O11/(O11 +O12)

O21/(O21 +O22)

The test of significance for theRR
This test is used to the hypothesis verification about the risk of occurence the analysed occurrence
is the same in the group of exposed and unexposed to the risk factor.
Hypotheses:

H0 : RR = 1,
H1 : RR ̸= 1.

The test statistic is defined by:

z =
ln(RR)

SE
,

where:
SE =

√
1

O11
− 1

011+012
+ 1

O21
− 1

021+022
– standard error of the ln(RR).

The test statistic asymptotically (for large sample size) has the normal distribution.

The p value, designated on the basis of the test statistic, is compared with the significance level
α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

Note
In the interpretation of the relative risk significance, we usually use the designated confidence
interval. Then, we check if the interval contains the value of 1.

Note
When zeros are present in the data table, then it may not be possible to calculate the odds ratio or
relative risk. In such a situation, to ensure that the odds ratio can be determined, you can check the
Replace zero in the table with: option in the analysis window. Selecting this option (adjustments for
continuity) adds the set value to all cells in the table.
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15.2.10 The Z test for 2 independent proportions

The Z test for 2 independent proportions is used in the similar situations as the chi2 test (2 × 2). It
means, when there are 2 independent samples with the total size of n1 and n2, with the 2 possible
results to gain (one of the results is distinguished with the size ofm1 ‐ in the first sample andm2 ‐ in the
second one). For these samples it is also possible to calculate the distinguished proportions p1 = m1

n1

and p2 =
m2
n2

. This test is used to verify the hypothesis informing us that the distinguished proportions
P1 and P2 in populations, from which the samples were drawn, are equal.

Basic assumptions:

– measurement on a nominal scale ‐ any order is not taken into account,

– an independent model,

– large sample sizes.

Hypotheses:

H0 : P1 = P2,
H1 : P1 ̸= P2,

where:
P1, P2 fraction for the first and the second population.

The test statistic is defined by:
Z =

p1 − p2√
p(1− p)

(
1
n1

+ 1
n2

) ,
where:
p = m1+m2

n1+n2
.

The test statistic modified by the continuity correction is defined by:

Z =
p1 − p2 − 1

2

(
1
n1

+ 1
n2

)
√
p(1− p)

(
1
n1

+ 1
n2

) .

The Z Statistic with and without the continuity correction asymptotically (for the large sample sizes)
has the normal distribution.

The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

Apart from the difference between proportions, the program calculates the value of the NNT.

NNT (number needed to treat) – indicator used in medicine to define the number of patients which
have to be treated for a certain time in order to cure one person.

. NNT is calculated from the formula:

NNT =
1

|p1 − p2|
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and is quoted when the difference p1 − p2 is positive.

NNH (number needed to harm) – an indicator used in medicine, denotes the number of patients whose
exposure to a risk over a specified period of time, results in harm to one person who would not other‐
wise be harmed. NNH is calculated in the same way as NNT, but is quoted when the difference p1 − p2
is negative.

Confidence interval – The narrower the confidence interval, the more precise the estimate. If the con‐
fidence interval includes 0 for the difference in proportions and∞ for the NNT and/or NNH, then there
is an indication to treat the result as statistically insignificant

Note
From PQStat version 1.3.0, the confidence intervals for the difference between two independent pro‐
portions are estimated on the basis of the Newcombe‐Wilson method. In the previous versions it was
estimated on the basis of the Wald method.

The justification of the change is as follows:
Confidence intervals based on the classical Wald method are suitable for large sample sizes and for
the difference between proportions far from 0 or 1. For small samples and for the difference between
proportions close to those extreme values, theWald method can lead to unreliable results (Newcombe
1998[122], Miettinen 1985[119], Beal 1987[17], Wallenstein 1997[163]). A comparison and analysis of
many methods which can be used instead of the simple Wald method can be found in Newcombe’s
study (1998)[122]. The suggested method, suitable also for extreme values of proportions, is the me‐
thod first published by Wilson (1927)[172], extended to the intervals for the difference between two
independent proportions.

Note
The confidence interval for NNT and/or NNH is calculated as the inverse of the interval for the propor‐
tion, according to the method proposed by Altman (Altman (1998)[6]).

The settings window with the Z test for 2 proportions can be opened in Statistics menu→ NonPara-
metric tests → Z for 2 independent proportions.

Copyright ©2010‐2023 PQStat Software – All rights reserved 204



15 COMPARISON ‐ TWO GROUPS

EXAMPLE (15.7) cont. (sex‐exam.pqs file)

You know that 50
90 = 55.56%out of all the women in the sample who passed the exam and 20

80 = 25.00%
out of all the men in the sample who passed the exam. This data can be written in two ways – as a
numerator and a denominator for each sample, or as a proportion and a denominator for each sample:

Hypotheses:

H0 : The proportion of the men who passed the exam is the same as the proportion
of the women who passed the exam in the analysed population,

H1 : The proportion of the men who passed the exam is different than the proportion
of the women who passed the exam in the analysed population.
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Note
It is necessary to select the appropriate area (data without headings) before the analysis begins, be‐
cause usually there are more information in a datasheet. You should also select the option indicating
the content of the variable (frequency (numerator) or proportion). The difference between proportions
distinguished in the sample is 30.56%, a 95% and the confidence interval for it (15.90%, 43.35%) does
not contain 0.

Based on the Z test without the continuity correction as well as on the Z test with the continuity cor‐
rection ( p value < 0.0001), on the significance level α=0.05, the alternative hypothesis can be accepted
(similarly to the Fisher exact test, its the mid‐p corrections, the χ2 test and the χ2 test with the Yate’s
correction). So, the proportion of men, who passed the exam is different than the proportion of wo‐
men, who passed the exam in the analysed population. Significantly, the exam was passed more often
by women (5090 = 55.56% out of all the women in the sample who passed the exam) than by men
(2080 = 25.00% out of all the men in the sample who passed the exam).
EXAMPLE 15.10.
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Let us assume that the mortality rate of a disease is 100% without treatment and that therapy lowers
the mortality rate to 50% – that is the result of 20 years of study. We want to know how many people
have to be treated to prevent 1 death in 20 years. To answer that question, two samples of 100 people
were taken from the population of the diseased. In the samplewithout treatment there are 100 patients
of whom we know they will all die without the therapy. In the sample with therapy we also have 100
patients of whom 50 will survive.

Patients – not undergoing therapy Patients – undergoing therapy
sample numerator sample (denominator) sample numerator sample (denominator)

100 100 50 100

We will calculate the NNT.

The difference between proportions is statistically significant (p < 0.0001) but we are interested in the
NNT – its value is 2, so the treatment of 2 patients for 20 years will prevent 1 death. The calculated
confidence interval value of 95% should be rounded off to a whole number, wherefore the NNT is 2 to
3 patients.
EXAMPLE 15.11. The value of the certain proportion difference in the study comparing the effectiveness
of drug 1 vs drug 2 was: difference (95%CI)=‐0.08 (‐0.27 do 0.11). This negative proportion difference
suggests that drug 1was less effective than drug 2, so its use put patients at risk. Because the proportion
difference is negative, the determined inverse is called the NNH, and because the confidence interval
contains infinity NNH(95%CI)= 2.5 (NNH 3.7 to ∞ to NNT 9.1) and goes from NNH to NNT, we should
conclude that the result obtained is not statistically significant (Altman (1998)[6]).

15.2.11 The McNemar test, the Bowker test of internal symmetry

Basic assumptions:

– measurement on a nominal scale ‐ any order is not taken into account,

– a dependent model.

The McNemar test
The McNemar test (NcNemar (1947)[116]) is used to verify the hypothesis determining the agreement
between the results of the measurements, which were done twiceX(1) andX(2) of anX feature (be‐
tween 2 dependent variablesX(1) andX(2)). The analysed feature can have only 2 categories (defined
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here as (+) and (–)). The McNemar test can be calculated on the basis of raw data or on the basis of a
2× 2 contingency table.
Tabela 15.2. 2× 2 contingency table for the observed frequencies of dependent variables

Observed frequencies X(2)

Oij (+) (–) Total

X(1)
(+) O11 O12 O11 +O12

(–) O21 O22 O21 +O22

Total O11 +O21 O12 +O22 n = O11 +O12 +O21 +O22

Hypotheses:

H0 : O12 = O21,
H1 : O12 ̸= O21.

The test statistic is defined by:

χ2 =
(O12 −O21)

2

O12 +O21
.

This statistic asymptotically (for large frequencies) has the χ2 distribution with a 1 degree of freedom.

The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

The Continuity correction for the McNemar test
This correction is a more conservative test than the McNemar test (a null hypothesis is rejected much
more rarely than when using the McNemar test). It guarantees the possibility of taking in all the values
of real numbers by the test statistic, according to the χ2 distribution assumption. Some sources give
the information that the continuity correction should be used always, but some other ones inform, that
only if the frequencies in the table are small.
The test statistic with the continuity correction is defined by:

χ2 =
(|O12 −O21| − 1)2

O12 +O21
.

McNemar’s exact test
A common general rule for the asymptotic validity of the McNemar chi‐square test is the Rufibach
assumption, which is that the number of incompatible pairs is greater than 10: O12 + O21 ≥ 10 [142]
when this condition is not satisfied, then we should base the exact probability values of this test [55].
The exact probability value of the test is based on a binomial distribution and is a conservative test, so
the recommended exact value of the mid‐p McNemar test is also given in addition to the exact value of
the MnNemar test.

Odds ratio of a result change

If the study is carried out twice for the same feature and on the same objects – then, odds ratio for the
result change (from (+) to (–) and inversely) is calculated for the table.

The odds for the result change from (+) to (–) isO12, and the odds for the result change from (–) to (+)
isO21. Odds Ratio (OR) is:

OR =
O12

O21
.
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Confidence interval for the odds ratio is calculated on the base of the standard error:

SE =

√
1

O12
+

1

O21
.

Note
Additionally, for small sample sizes, the exact range of the confidence interval for the Odds Ratio can
be determined[100].

The settings window with the Bowker-McNemar test can be opened in Statistics menu → NonPara-
metric tests → Bowker-McNemar or in Wizard.

The Bowker test of internal symmetry
The Bowker test of internal symmetry (Bowker (1948)[23]) is an extension of the McNemar test for
2 variables with more than 2 categories (c > 2). It is used to verify the hypothesis determining the
symmetry of 2 results of measurements executed twice X(1) and X(2) of X feature (symmetry of 2
dependent variables X(1) i X(2)). An analysed feature may have more than 2 categories. The Bowker
test of internal symmetry can be calculated on the basis of either raw data or a c× c contingency table.
Tabela 15.3. c× c contingency table for the observed frequencies of dependent variables

Observed frequencies X(2)

Oij X
(2)
1 X

(2)
2 ... X

(2)
c Total

X(1)

X
(1)
1 O11 O12 ... O1c

∑c
j=1O1j

X
(1)
2 O21 O22 ... O2c

∑c
j=1O2j

... ... ... ... ... ...
X

(1)
c Oc1 Oc2 ... Occ

∑c
j=1Ocj

Total
∑c

i=1Oi1
∑c

i=1Oi2 ...
∑c

i=1Oic n =
∑c

i=1

∑c
j=1Oij
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Hypotheses:

H0 : Oij = Oji,
H1 : Oij ̸= Oji for at least one pairOij , Oji,

where j ̸= i, j ∈ 1, 2, ..., c, i ∈ 1, 2, ..., c, so Oij and Oji are the frequencies of the symmetrical pairs
in the c× c table

The test statistic is defined by:

χ2 =

c∑
i=1

∑
j>i

(Oij −Oji)
2

Oij +Oji
.

This statistic asymptotically (for large sample size) has the χ2 distribution with a number of degrees of
freedom calculated using the formula: df = c(c−1)

2 .

The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

EXAMPLE 15.12. (opinion.pqs file)
Two different surveys were carried out. They were supposed to analyse students’ opinions about the
particular academic professor. Both the surveys enabled students to give a positive opinion, a negative
and a neutral one. Both surveys were carried out on the basis of the same sample of 250 students. But
the first one was carried out the day before an exam done by the professor, and the other survey the
day after the exam. There are some data below – in a form of raw rows, and all the data – in the form
of a contingency table. Check, if both surveys give the similar results.

Hypotheses:

H0 : the number of students, who changed their opinions is exactly the same
for each of the possibile symmetric opinion changes,

H1 : the number of students, who changed their opinions is different
for at least one of the possibile symmetric opinion changes,

where, for example, changing the opinion from positive to negative one is symmetrical to
changing the opinion from negative to positive one.
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Comparing the p value for the Bowker test (p value < 0.0001) with the significance level α = 0.05 it
may be assumed that students changed their opinions. Looking at the table you can see that, therewere
more students who changed their opinions to negative ones after the exam, than those who changed
it to positive ones after the exam. There were also students who did not evaluate the professor in the
positive way after the exam any more.
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If you limit your analysis only to the people having clear opinions about the professor (positive or nega‐
tive ones), you can use the McNemar test:

Hypotheses:

H0 : the number of students, who changed their opinions from negative to positive ones
is exactly the same as those, who changed their opinions from positive to negative,

H1 : the number of students, who changed their opinions from negative to positive ones
is different from those, who changed their opinions from positive to negative.
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f you compare the p value, calculated for the McNemar test (p value < 0.0001), with the significance
level α = 0.05, you draw the conclusion that the students changed their opinions. There were much
more students, who changed their opinions to negative ones after the exam, than those who changed
their opinions to positive ones. The possibility of changing the opinion from positive (before the exam)
to negative (after the exam) is eleven

(
44
4

)
times greater than from negative to positive (the chance to

change opinion in the opposite direction is:
(

4
44

)
).

15.2.12 The Z Test for two dependent proportions

Z Test for two dependent proportions is used in situations similar to theMcNemar’s Test, i.e. when we
have 2 dependent groups of measurements (X(1) iX(2)), in which we can obtain 2 possible results of
the studied feature ((+)(–)).

Observed sizes X(2)

Oij (+) (–) Suma

X(1)
(+) O11 O12 O11 +O12

(–) O21 O22 O21 +O22

Sum O11 +O21 O12 +O22 n = O11 +O12 +O21 +O22
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We can also calculated distinguished proportions for those groups p1 = O11+O12
n i p2 = O11+O21

n . The
test serves the purpose of verifying the hypothesis that the distinguished proportions P1 and P2 in the
population from which the sample was drawn are equal.

Basic assumptions:

– measurement on the nominal ‐ any order is not taken into account,

– dependent model,

– large sample size.

Hypotheses:

H0 : P1 − P2 = 0,
H1 : P1 − P2 ̸= 0,

where:
P1, P2 fractions for the first and the second measurement.

The test statistic has the form presented below:

Z =
p1 − p2√
O21 +O12

· n,

The Z Statistic asymptotically (for the large sample size) has the normal distribution.

On the basis of test statistics, p value is estimated and then compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

Note
Confidence interval for the difference of two dependent proportions is estimated on the basis of the
Newcombe‐Wilson method.

The window with settings for Z-Test for two dependent proportions is accessed via the menu Stati-
stics→Nonparametric tests→Z-Test for two dependent proportions.
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EXAMPLE (15.12) cont. (opinion.pqs file )

Whenwe limit the study to people who have a specific opinion about the professor (i.e. those who only
have a positive or a negative opinion) we will have 152 such students. The data for calculations are:
O11 = 50,O12 = 4,O21 = 44,O22 = 54. We know that 50+4

152 = 35.53% students expressed a negative
opinion before the exam. After the exam the percentage was 50+44

152 = 61.84%.

Hypotheses:

H0 : a lack of a difference between the number of negative evaluations of
the professor before and after the exam,

H1 : there is a difference between the number of negative evaluations of
the professor before and after the exam.
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The difference in proportions distinguished in the sample is 26.32%, and the confidence interval of 95%
for the sample (18.07%, 33.88%) does not contain 0.

On the basis of a Z test (p=0.0001), on the significance level of α=0.05 (similarly to the case of McNe‐
mar’s test) we accept the alternative hypothesis. Therefore, the proportion of negative evaluations be‐
fore the examdiffers from the proportion of negative evaluations after the exam. Indeed, after the exam
there are more negative evaluations of the professor.
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16 COMPARISON ‐ MORE THAN TWO GROUPS

Interval scale

Are
the data
normally

distributed?

Are the data
dependent? Whether

sphericity
met?

ANOVA for
dependent
groups

MANOVA
or ANOVA

with correction
Epsilon, GG, H‐F

Are
the variances

equal?

ANOVA for
independent

groups

ANOVA for
independent
groups with

correction F ∗ and F ′′

Y

N

Y

N

Y N Y N

Y

N

Y

N

Ordinal scale

Are the data
dependent?

Friedman
ANOVA

Kruskal
Wallis
ANOVA

Nominal scale

Are the data
dependent?

Q‐Cochran
ANOVA

multidimentional
χ2 test

Levenea,
Brown‐Forsythe

normality tests

Mauchly test

Note
The proposed test selection scheme for the multiple group comparison is not the only possible scheme
and does not include all the tests proposed in the software for this comparison.

Note
Note, that simultaneous comparison of more than two groups can NOT be replaced with multiple per‐
formance the tests for the comparison of two groups. It is the result of the necessity of controlling the
I type error α. Choosing the α and using the k‐fold selected test for the comparison of 2 groups, we
could make the assumed level much higher α. It is possible to avoid this error using the ANOVA test
(Analysis of Variance) and contrasts or the POST‐HOC tests dedicated to them.
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16.1 PARAMETRIC TESTS

16.1.1 The ANOVA for independent groups

The one‐way analysis of variance (ANOVA for independent groups) proposed by Ronald Fisher, is used
to verify the hypothesis determining the equality of means of an analysed variable in several (k ≥ 2)
populations.

Basic assumptions:

– measurement on an interval scale,

– normality of distribution of an analysed feature in each population,

– an independent model,

– equality of variances of an analysed variable in all populations.

Hypotheses:

H0 : µ1 = µ2 = ... = µk,
H1 : not all µj are equal (j = 1, 2, ..., k),

where:
µ1,µ2,...,µk – means of an analysed variable of each population.

The test statistic is defined by:
F =

MSBG

MSWG
,

where:
MSBG =

SSBG

dfBG
– mean square between‐groups,

MSWG =
SSWG

dfWG
– mean square within‐groups,

SSBG =

k∑
j=1

(∑nj

i=1 xij
)2

nj
−

(∑k
j=1

∑nj

i=1 xij

)2
N

– between‐groups sum of squares,

SSWG = SST − SSBG – within‐groups sum of squares,

SST =

 k∑
j=1

nj∑
i=1

x2ij

−

(∑k
j=1

∑nj

i=1 xij

)2
N

– total sum of squares,

dfBG = k − 1 – between‐groups degrees of freedom,
dfWG = dfT − dfBG – within‐groups degrees of freedom,
dfT = N − 1 – total degrees of freedom,
N =

∑k
j=1 nj ,

nj – samples sizes for (j = 1, 2, ...k),
xij – values of a variable taken from a sample for (i = 1, 2, ...nj), (j = 1, 2, ...k).

The F statistic has the F Snedecor distribution with dfBG and dfWG degrees of freedom.

The p value, designated on the basis of the test statistic, is compared with the significance level α:
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if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

Effect size ‐ partial η2
This quantity indicates the proportion of explained variance to total variance associated with a fac‐
tor. Thus, in a one‐factor ANOVA model for independent groups, it indicates what proportion of the
between‐groups variability in outcomes can be attributed to the factor under study determining the
independent groups.

η2 =
SSBG

SSBG + SSres

16.1.2 The contrasts and the POST‐HOC tests

An analysis of the variance enables you to get information only if there are any significant differences
among populations. It does not inform you which populations are different from each other. To gain
some more detailed knowledge about the differences in particular parts of our complex structure, you
should use contrasts (if you do the earlier planned and usually only particular comparisons), or the
procedures of multiple comparisons POST‐HOC tests (when having done the analysis of variance, we
look for differences, usually between all the pairs).

The number of all the possible simple comparisons is calculated using the following formula:

c =

(
k

2

)
=

k(k − 1)

2

Hypotheses:

The first example ‐ simple comparisons (comparison of 2 selected means):

H0 : µ1 = µ2,
H1 : µ1 ̸= µ2.

The second example ‐ complex comparisons (comparison of combination of selected means):

H0 : µ1 =
µ2+µ3

2 ,

H1 : µ1 ̸= µ2+µ3

2 .

If you want to define the selected hypothesis you should ascribe the contrast value cj , (j = 1, 2, ...k) to
each mean. The cj values are selected, so that their sums of compared sides are the opposite numbers,
and their values of means which are not analysed count to 0.

The first example: c1 = 1, c2 = −1, c3 = 0, ...ck = 0.

The second example: c1 = 2, c2 = −1, c3 = −1, c4 = 0,..., ck = 0.

How to choose the proper hypothesis:

(i) Comparing the differences between the selected means with the critical difference (CD) calcula‐
ted using the proper POST‐HOC test:

if the differences between means≥ CD =⇒ rejectH0 and acceptH1,
if the differences between means< CD =⇒ there is no reason to rejectH0.

(ii) Comparing the p value, designated on the basis of the test statistic of the proper POST‐HOC test,
with the significance level α:
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if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

The LSD Fisher test
For simple and complex comparisons, equal‐size groups as well as unequal‐size groups, when the va‐
riances are equal.

(i) The value of critical difference is calculated by using the following formula:

CD =
√
Fα,1,dfWG

·

√√√√√
 k∑

j=1

c2j
nj

MSWG,

where:
Fα,1,dfWG

‐ is the critical value (statistic) of the F Snedecor distribution for a given
significance level α and degrees of freedom, adequately: 1 and dfWG.

(ii) The test statistic is defined by:

t =

∑k
j=1 cjxj√(∑k

j=1

c2j
nj

)
MSWG

.

The test statistic has the t‐Student distribution with dfWG degrees of freedom.

The Scheffe test
For simple comparisons, equal‐size groups aswell as unequal‐size groups, when the variances are equal.

(i) The value of a critical difference is calculated by using the following formula:

CD =
√
Fα,dfBG,dfWG

·

√√√√√(k − 1)

 k∑
j=1

c2j
nj

MSWG,

where:
Fα,dfBG,dfWG

‐ is the critical value (statistic) of the F Snedecor distribution for a given
significance level α and dfBG and dfWG degrees of freedom.

(ii) The test statistic is defined by:

F =

(∑k
j=1 cjxj

)2
(k − 1)

(∑k
j=1

c2j
nj

)
MSWG

.

The test statistic has the F Snedecor distribution with dfBG and dfWG degrees of freedom.

The Tukey test.
For simple comparisons, equal‐size groups aswell as unequal‐size groups, when the variances are equal.

(i) The value of a critical difference is calculated by using the following formula:

CD =

√
2 · qα,dfWG,k ·

√(∑k
j=1

c2j
nj

)
MSWG

2
,
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where:
qα,dfWG,k ‐ is the critical value (statistic) of the studentized range distribution for a
given significance level α and dfWG and k degrees of freedom.

(ii) The test statistic is defined by:

q =
√
2

∑k
j=1 cjxj√(∑k

j=1

c2j
nj

)
MSWG

.

The test statistic has the studentized range distribution with dfWG and k degrees of freedom.
Info.
The algorithm for calculating the p value and the statistic of the studentized range distribution in PQStat
is based on the Lund works (1983)[105]. Other applications or web pages may calculate a little bit dif‐
ferent values than PQStat, because they may be based on less precised or more restrictive algorithms
(Copenhaver and Holland (1988), Gleason (1999)).

Test for trend.
The test examining the existence of a trend can be calculated in the same situation as ANOVA for inde‐
pendent variables, because it is based on the same assumptions, but it captures the alternative hypo‐
thesis differently ‐ indicating in it the existence of a trend in themean values for successive populations.
The analysis of the trend in the arrangement of means is based on contrasts Fisher LSD. By building ap‐
propriate contrasts, you can study any type of trend such as linear, quadratic, cubic, etc. Below is a table
of sample contrast values for selected trends.

Contrast
Number of groups Trends c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

3 line ‐1 0 1
quadratic 1 ‐2 1

4
line ‐3 ‐1 1 3

quadratic 1 ‐1 ‐1 1
cubic ‐1 3 ‐3 1

5
line ‐2 ‐1 0 1 2

quadratic 2 ‐1 ‐2 ‐1 2
cubic ‐1 2 0 ‐2 1

6
line ‐5 ‐3 ‐1 1 3 5

quadratic 5 ‐1 ‐4 ‐4 ‐1 5
cubic ‐5 7 4 ‐4 ‐7 5

7
line ‐3 ‐2 ‐1 0 1 2 3

quadratic 5 0 ‐3 ‐4 ‐3 0 5
cubic ‐1 1 1 0 ‐1 ‐1 1

8
line ‐7 ‐5 ‐3 ‐1 1 3 5 7

quadratic 7 1 ‐3 ‐5 ‐5 ‐3 1 7
cubic ‐7 5 7 3 ‐3 ‐7 ‐5 7

9
line ‐4 ‐3 ‐2 ‐1 0 1 2 3 4

quadratic 28 7 ‐8 ‐17 ‐20 ‐17 ‐8 7 28
cubic ‐14 7 13 9 0 ‐9 ‐13 ‐7 14

10
line ‐9 ‐7 ‐5 ‐3 ‐1 1 3 5 7 9

quadratic 6 2 ‐1 ‐3 ‐4 ‐4 ‐3 ‐1 2 6
cubic ‐42 14 35 31 12 ‐12 ‐31 ‐35 ‐14 42
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Linear trend
A linear trend, like other trends, can be analyzed by entering the appropriate contrast values. However,
if the direction of the linear trend is known, simply use the For trend option and indicate the expected
order of the populations by assigning them consecutive natural numbers.

The analysis is performed on the basis of linear contrast, i.e. the groups indicated according to the na‐
tural order are assigned appropriate contrast values and the statistics are calculated Fisher LSD .

With the expected direction of the trend known, the alternative hypothesis is one‐sided and the one‐
sided p‐value is interpreted. The interpretation of the two‐sided p‐value means that the researcher
does not know (does not assume) the direction of the possible trend.
The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

The settings window with the One-way ANOVA for independent groups can be opened in Statistics
menu→Parametric tests→ANOVA for independent groups or in Wizard.

Homogeneous groups.
For each post‐hoc test, homogeneous groups are constructed. Each homogeneous group represents
a set of groups that are not statistically significantly different from each other. For example, suppose
we divided subjects into six groups regarding smoking status: Nonsmokers (NS), Passive smokers (PS),
Noninhaling smokers (NI), Light smokers (LS), Moderate smokers (MS), Heavy smokers (HS) and we exa‐
mine the expiratory parameters for them. In our ANOVAwe obtained statistically significant differences
in exhalation parameters between the tested groups. In order to indicate which groups differ significan‐
tly and which do not, we perform post‐hoc tests. As a result, in addition to the table with the results of
each pair of comparisons and statistical significance in the form of p:
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we obtain a division into homogeneous groups:

In this case we obtained 4 homogeneous groups, i.e. A, B, C and D, which indicates the possibility of
conducting the study on the basis of a smaller division, i.e. instead of the six groups we studied ori‐
ginally, further analyses can be conducted on the basis of the four homogeneous groups determined
here. The order of groups was determined on the basis of weighted averages calculated for particular
homogeneous groups in such a way, that letter A was assigned to the group with the lowest weighted
average, and further letters of the alphabet to groups with increasingly higher averages.

EXAMPLE 16.1. (age ANOVA.pqs file)
There are 150 persons chosen randomly from the population of workers of 3 different transport com‐
panies. From each company there are 50 persons drawn to the sample. Before the experiment begins,
you should check if the average age of the workers of these companies is similar, because the next step
of the experiment depends on it. The age of each participant is written in years.
Age (company 1): 27, 33, 25, 32, 34, 38, 31, 34, 20, 30, 30, 27, 34, 32, 33, 25, 40, 35, 29, 20, 18, 28, 26,
22, 24, 24, 25, 28, 32, 32, 33, 32, 34, 27, 34, 27, 35, 28, 35, 34, 28, 29, 38, 26, 36, 31, 25, 35, 41, 37
Age (company 2): 38, 34, 33, 27, 36, 20, 37, 40, 27, 26, 40, 44, 36, 32, 26, 34, 27, 31, 36, 36, 25, 40, 27,
30, 36, 29, 32, 41, 49, 24, 36, 38, 18, 33, 30, 28, 27, 26, 42, 34, 24, 32, 36, 30, 37, 34, 33, 30, 44, 29
Age (company 3): 34, 36, 31, 37, 45, 39, 36, 34, 39, 27, 35, 33, 36, 28, 38, 25, 29, 26, 45, 28, 27, 32, 33,
30, 39, 40, 36, 33, 28, 32, 36, 39, 32, 39, 37, 35, 44, 34, 21, 42, 40, 32, 30, 23, 32, 34, 27, 39, 37, 35

Before proceeding with the ANOVA analysis, the normality of the data distribution was confirmed.

The analysis window tested the assumption of equality of variance, obtaining p>0.05 in both tests.

Hypotheses:
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H0 : the average age of the workers off all the analysed transport companies is the same,
H1 : at least 2 means are different.

Comparing the p value = 0.005147 of the one‐way analysis of variance with the significance level α =
0.05, you can draw the conclusion that the average ages of workers of these transport companies is not
the same. Based just on the ANOVA result, you do not know precisely which groups differ from others in
terms of age. To gain such knowledge, it must be used one of the POST‐HOC tests, for example the Tukey

test. To do this, you should resume the analysis by clicking and then, in the options window
for the test, you should select Tukey HSD and Add graph.
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The critical difference (CD) calculated for each pair of comparisons is the same (because the groups
sizes are equal) and counts to 2.730855. The comparison of the CD value with the value of the mean
difference indicates, that there are significant differences only between the mean age of the workers
from the first and the third transport company (only if these 2 groups are compared, the CD value is
less than the difference of the means). The same conclusion you draw, if you compare the p value of
POST‐HOC test with the significance level α = 0.05. The workers of the first transport company are
about 3 years younger (on average) than the workers of the third transport company. Two interlocking
homogeneous groups were obtained, which are also marked on the graph.
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We can provide a detailed description of the data by selecting Descriptive statistics in the analysis win‐
dow

16.1.3 The ANOVA for independent groups with F ∗ and F ′′ corrections

F ∗ (Brown‐Forsythe, 1974[32]) and F ′′ (Welch, 1951[166]) Corrections concern ANOVA for indepen‐
dent groups and are calculated when the assumption of equality of variances is not met.
The test statistic is in the form of:

F ∗ =
SSBG∑k

j=1

(
1− nj

n sd2j

) ,

F ′′ =

∑k
j=1 wj(xj−x̃)

k−1

1 + 2(k−2)
k2−1

∑k
j=1 hj

,

where:
sdj – group standard deviation j,
wj =

nj

sd2j
– group weight j,

x̃ – weighted mean,

hj =

(
1−

wj∑k
j=1

wj

)2

nj−1 .

This statistic is subject toSnedecor’s F distribution with k− 1 and adjusted dfWGk
degrees of freedom.

The p value, determined on the basis of the test statistics, is comparde with the significance level α :

jeżeli p ≤ α =⇒ we rejectH0 adoptingH1,
jeżeli p > α =⇒ there is no basis to rejectH0.

POST‐HOC Tests
Introduction to the contrasts and POST‐HOC testswas done in chapter 16.1.2 concerning one‐way ana‐
lysis of variance.

T2 Tamhane test
For simple and complex comparisons, equal‐size groups as well as unequal‐size groups, when the va‐
riances differ significantly (Tamhane A. C., 1977[155]).

(i) The value of critical difference is calculated by using the following formula:

CD =
√

FαSidak,1,dfv ·

√√√√√
 k∑

j=1

c2jsd
2
j

nj

,

Copyright ©2010‐2023 PQStat Software – All rights reserved 226



16 COMPARISON ‐ MORE THAN TWO GROUPS

where:
FαSidak,1,dfv ‐ is the critical value (statistics) of the Snedecor’s F distribution for modi‐
fied significance level αSidak and for degrees of freedom 1 and dfv respectively,
αSidak = 1− (1− α)(1/k),

dfv =

(∑k
j=1

c2j sd
2
j

nj

)2

∑k
j=1

c4
j
sd4

j

n2
j
(nj−1)

(ii) The test statistic is in the form of:

t =

(∑k
j=1 cjxj

)2
√(∑k

j=1

c2jsd
2
j

nj

) .

This statistic is subject to the t‐Student distribution with dfv degrees of freedom, and p value is
adjusted by the number of possible simple comparisons.

BF test (Brown‐Forsythe)
For simple and complex comparisons, equal‐size groups as well as unequal‐size groups, when the va‐
riances differ significantly (Brown M. B. i Forsythe A. B. (1974)[31]).

(i) The value of critical difference is calculated by using the following formula:

CD =
√
Fα,k−1,dfv ·

√√√√√(k − 1)

 k∑
j=1

c2jsd
2
j

nj

,

where:
Fα,k−1,dfv ‐ is the critical value (statistics) of the Snedecor’s F distribution for a given
significance level α as well as k − 1 and dfv degrees of freedom.

(ii) The test statistic is in the form of:

F =

(∑k
j=1 cjxj

)2
(k − 1)

(∑k
j=1

c2jsd
2
j

nj

) .

This statistic is subject to Snedecor’s F distribution with k − 1 and dfv degrees of freedom.

GH test (Games‐Howell).
For simple and complex comparisons, equal‐size groups as well as unequal‐size groups, when the va‐
riances differ significantly (Games P. A. i Howell J. F. 1976[65]).

(i) The value of critical difference is calculated by using the following formula:

CD =

qα,k,dfv ·

√(∑k
j=1

c2jsd
2
j

nj

)
√
2

,
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gdzie:
qα,k,dfv ‐ is the critical value (statistics) of the the distribution of the studentised inte‐
rval for a given significance level α as well as k and dfv degrees of freedom.

(ii) The test statistic is in the form of:

q =
√
2

∑k
j=1 cjxj√(∑k
j=1

c2jsd
2
j

nj

) .

This statistic follows a studenty distribution with k and dfv degrees of freedom.

Trend test.
The test examining the presence of a trend can be calculated in the same situation as ANOVA for in‐
dependent groups with correction F ∗ and F ′′, because it is based on the same assumptions, however,
differently captures the alternative hypothesis ‐ indicating the existence of a trend in the mean values
for successive populations. The analysis of the trend of the arrangement of means is based on contrasts
(T2 Tamhane). By creating appropriate contrasts you can study any type of trend e.g. linear, quadratic,
cubic, etc. A table of sample contrast values for certain trends can be found in the description trend
test for Ona‐Way ANOVA.

Linear trend
A linear trend, like other trends, can be analyzed by entering the appropriate contrast values. Howe‐
ver, if the direction of the linear trend is known, simply use the Linear Trend option and indicate the
expected order of the populations by assigning them consecutive natural numbers.

The analysis is performed based on linear contrast, i.e., the groups indicated according to the natural
ordering are assigned appropriate contrast values and the T2 Tamhane statistic is calculated.

With the expected direction of the trend being known, the alternative hypothesis is one‐sided and the
one‐sided value of p is subject to interpretation. The interpretation of the two‐sided value of p means
that the researcher does not know (does not assume) the direction of the possible trend.
The test statistic determined from the test statistic p value is compared with α :

if p ≤ α =⇒ we rejectH0 adoptingH1,
if p > α =⇒ there are no grounds to rejectH0.

Settings window for the One-way ANOVA for independent groups with F ∗ and F ′′ adjustments is
opened via menu Statistics→Parametric tests→ANOVA for independent groups or via the Wizard.
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EXAMPLE 16.2. (unemployment.pqs file)
There are many factors that control the time it takes to find a job during an economic crisis. One of
the most important may be the level of education. Sample data on education and time (in months) of
unemployment are gathered in the file. We want to see if there are differences in average job search
time for different education categories.

Hypotheses:

H0 : average job search time is the same
for every category of education,

H1 : at least one education category (one population)
have a different average job search time.

Due to differences in variance between populations (for Levene test p = 0.0001 and for Brown‐Forsythe
test p = 0.0002):

the analysis is performed with the correction of various variances enabled. The obtained result of the
adjusted F statistic is shown below.
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Comparing p < 0.0001 (for the F ∗ test) and p < 0.0001 (for the F ′′ test) with a significance level of
α = 0.05, we find that the average job search time differs depending on the education one has. By
performing one of the POST‐HOC tests, designed to compare groups with different variances, we find
out which education categories are affected by the differences found:
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The least significant difference (LSD) determined for each pair of comparisons is not the same (even
though the group sizes are equal) because the variances are not equal. Relating the LSD value to the
resulting differences in mean values yields the same result as comparing the p value with a significance
level of α = 0.05. The differences are between primary and higher education, primary and secondary
education, and vocational and higher education. The resulting homogeneous groups overlap. In general,
however, looking at the graph, wemight expect that themore educated a person is, the less time it takes
them to find a job.
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In order to test the stated hypothesis, it is necessary to perform the trend analysis. To do so, we reopen

the analysis with the button and, in the test options window, select: the Tamhane’s T2 me‐
thod, the Contrasts option (and set the appropriate contrast), or the For trend option (and indicate the
order of education categories by specifying consecutive natural numbers).

Depending onwhether the direction of the correlation between education and job search time is known
to us, we use a one‐sided or two‐sided p value. Both of these values are less than the given significance
level. The trend we predicted is confirmed, that is, at a significance level of α = 0.05 we can say that
this trend does indeed exist in the population from which the sample is drawn.

16.1.4 The Brown‐Forsythe test and the Levene test

Both tests: the Levene test (Levene, 1960 [99]) and the Brown‐Forsythe test (Brown and Forsythe, 1974
[30]) are used to verify the hypothesis determining the equality of variance of an analysed variable in
several (k >= 2) populations.

Basic assumptions:

• measurement on an interval scale,

• normality of distribution of an analysed feature in each population,

• an independent model.

Hypotheses:

H0 : σ2
1 = σ2

2 = ... = σ2
k,

H1 : not all σ2
j are equal (j = 1, 2, ..., k),

where:
σ2
1 ,σ2

2 ,...,σ2
k − variances of an analysed variable of each population.

The analysis is based on calculating the absolute deviation of measurement results from the mean (in
the Levene test) or from the median (in the Brown‐Forsythe test), in each of the analysed groups. This
absolute deviation is the set of data which are under the same procedure performed to the analysis of
variance for independent groups. Hence, the test statistic is defined by:

F =
MSBG

MSWG
,

The test statistic has the F Snedecor distribution with dfBG and dfWG degrees of freedom.

The p value, designated on the basis of the test statistic, is compared with the significance level α:
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if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

Note
The Brown‐Forsythe test is less sensitive than the Levene test, in terms of an unfulfilled assumption
relating to distribution normality.

The settingswindowwith theLevene, Brown-Forsythe tests’ canbeopened inStatisticsmenu→Parametric
tests→Levene, Brown-Forsythe.

16.1.5 The ANOVA for dependent groups

The single‐factor repeated‐measures analysis of variance (ANOVA for dependent groups) is used when
the measurements of an analysed variable are made several times (k ≥ 2) each time in different con‐
ditions (but we need to assume that the variances of the differences between all the pairs of measure‐
ments are pretty close to each other).

This test is used to verify the hypothesis determining the equality of means of an analysed variable in
several (k ≥ 2) populations.

Basic assumptions:

– measurement on an interval scale,

– the normal distribution for all variables which are the differences of measurement pairs (or the
normal distribution for an analysed variable in each measurement),

– a dependent model.
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Hypotheses:

H0 : µ1 = µ2 = ... = µk,
H1 : not all µj are equal (j = 1, 2, ..., k),

where:
µ1,µ2,...,µk – means for an analysed features, in the following measurements from the
examined population.

The test statistic is defined by:
F =

MSBC

MSres

where:
MSBC =

SSBC

dfBC
– mean square between‐conditions,

MSres =
SSres

dfres
– mean square residual,

SSBC =

k∑
j=1

(
(
∑n

i=1 xij)
2

n

)
−

(∑k
j=1

∑n
i=1 xij

)2
N

– between‐conditions sum of squ‐

ares,

SSres = SST − SSBS − SSBC – residual sum of squares,

SST =

 k∑
j=1

n∑
i=1

x2ij

−

(∑k
j=1

∑n
i=1 xij

)2
N

– total sum of squares,

SSBS =

n∑
i=1


(∑k

j=1 xij

)2
k

 −

(∑k
j=1

∑n
i=1 xij

)2
N

– between‐subjects sum of squ‐

ares,

dfBC = k − 1 – between‐conditions degrees of freedom,
dfres = dfT − dfBC − dfBS – residual degrees of freedom,
dfT = N − 1 – total degrees of freedom,
dfBS = n− 1 – between‐subjects degrees of freedom,
N = nk,
n – sample size,
xij – values of the variable from i subjects (i = 1, 2, ...n) in j conditions (j = 1, 2, ...k).

The test statistic has the F Snedecor distribution with dfBC and dfres degrees of freedom.

The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

Effect size ‐ partial η2
This quantity indicates the proportion of explained variance to total variance associated with a factor.
Thus, in a repeated measures model, it indicates what proportion of the between‐conditions variability
in outcomes can be attributed to repeated measurements of the variable.

η2 =
SSBC

SSBC + SSres
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Testy POST‐HOC
Introduction to the contrasts and the POST‐HOC tests was performed in the 16.1.2 unit, which relates
to the one‐way analysis of variance.

The LSD Fisher test
For simple and complex comparisons (frequency in particular measurements is always the same).

Hypotheses:
Example ‐ simple comparisons (comparison of 2 selected means):

H0 : µj = µj+1,
H1 : µj ̸= µj+1.

(i) The value of the critical difference is calculated by using the following formula:

CD =
√

Fα,1,dfres ·

√√√√√
 k∑

j=1

c2j
n

MSres,

where:
Fα,1,dfres ‐ is the critical value (statistic) of the F Snedecor distribution for a given si‐
gnificance level α and degrees of freedom, adequately: 1 and dfres.

(ii) The test statistic is defined by:

t =

∑k
j=1 cjxj√(∑k

j=1

c2j
n

)
MSres

.

The test statistic has the t‐Student distribution with dfres degrees of freedom.

Note!

For contrasts SEcontrast is used instead of

√(∑k
j=1

c2j
n

)
MSres, and degrees of freedem: dfBS .

The Scheffe test
For simple comparisons (frequency in particular measurements is always the same).

(i) The value of the critical difference is calculated by using the following formula:

CD =
√

Fα,dfBC ,dfres ·

√√√√√(k − 1)

 k∑
j=1

c2j
n

MSres,

where:
Fα,dfBC ,dfres ‐ is the critical value (statistic) of the F Snedecor distribution for a given
significance level α and dfBC and dfres degrees of freedom.

(ii) The test statistic is defined by:

F =

(∑k
j=1 cjxj

)2
(k − 1)

(∑k
j=1

c2j
n

)
MSres

.

The test statistic has the F Snedecor distribution with dfBC and dfref degrees of freedom.
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The Tukey test.
For simple comparisons (frequency in particular measurements is always the same).

(i) The value of the critical difference is calculated by using the following formula:

CD =

√
2 · qα,dfres,k ·

√(∑k
j=1

c2j
n

)
MSres

2
,

where:
qα,dfres,k ‐ is the critical value (statistic) of the studentized range distribution for a given
significance level α and dfres and k degrees of freedom.

(ii) The test statistic is defined by:

q =
√
2

∑k
j=1 cjxj√(∑k

j=1

c2j
n

)
MSres

.

The test statistic has the studentized range distribution with dfres and k degrees of freedom.

Info.
The algorithm for calculating the p value and statistic of the studentized range distribution in PQStat
is based on the Lund works (1983)[105]. Other applications or web pages may calculate a little bit dif‐
ferent values than PQStat, because they may be based on less precised or more restrictive algorithms
(Copenhaver and Holland (1988), Gleason (1999)).

Test for trend.
The test that examines the existence of a trend can be calculated in the same situation as ANOVA for
dependent variables, because it is based on the same assumptions, but it captures the alternative hypo‐
thesis differently – indicating in it the existence of a trend of mean values in successive measurements.
The analysis of the trend in the arrangement of means is based on contrasts Fisher LSD test. By buil‐
ding appropriate contrasts, you can study any type of trend, e.g. linear, quadratic, cubic, etc. A table of
example contrast values for selected trends can be found in the description of the testu dla trendu for
ANOVA of independent variables.

Linear trend
Trend liniowy, tak jak pozostałe trendy, możemy analizować wpisując odpowiednie wartości kontra‐
stów. Jeśli jednak znany jest kierunek trendu liniowego, wystarczy skorzystać z opcji Trend liniowy i
wskazać oczekiwaną kolejność populacji przypisując im kolejne liczby naturalne.

A linear trend, like other trends, can be analyzed by entering the appropriate contrast values. Howe‐
ver, if the direction of the linear trend is known, simply use the Fisher LSD test option and indicate the
expected order of the populations by assigning them consecutive natural numbers.

With the expected direction of the trend known, the alternative hypothesis is one‐sided and the one‐
sided p‐values is interpreted. The interpretation of the two‐sided p‐value means that the researcher
does not know (does not assume) the direction of the possible trend.
The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.
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The settings window with the Single-factor repeated-measures ANOVA can be opened in Statistics
menu→Parametric tests→ANOVA for dependent groups or in Wizard.

LOOK AT THE EXAMPLE (16.3)

16.1.6 Mauchly’s sphericity

Sphericity assumption is similar but stronger than the assumption of equality of variance. It is met if
the variances for the differences between pairs of repeated measurements are the same. Usually, the
simpler but more stringent compound symmetry condition is considered in place of the sphericity as‐
sumption. This can be done becausemeeting the compounded symmetry condition entails meeting the
sphericity assumption.

Compound symmetry condition assumes, symmetry in the covariance matrix, and therefore equality
of variances (elements of the main diagonal of the covariance matrix) and equality of covariances (ele‐
ments off the main diagonal of the covariance matrix).

Violating the assumption of sphericity or combined symmetry unduly reduces the conservatism of the
F‐test (makes it easier to reject the null hypothesis).

To check the sphericity assumption, theMauchly test is used (1940)[115]. Statistical significance (p ≤ α)
here implies a violation of the sphericity assumption.

Basic application conditions:

– measurement on an interval scale,

– multivariate normal distribution or normality of the distribution of each variable tested,

– dependent model.
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Hypotheses:

H0 : σdiff(1) = σdiff(2) = ... = σdiff(s),

H1 : not all σdiff(i) are equal (i = 1, 2, ..., s),

where:
σdiff(i) ‐ population variance of differences between i‐th pair of repeated measurements,
s ‐ number of pairs.

Mauchly’sW value is defined as follows:

W =

∏k−1
j=1 λj(

1
k−1

∑k−1
j=1 λj

)k−1
.

The test statistic has the form of:

χ2 = (f − 1)(n− 1) lnW,

where:
f = 2(k−1)2+(k−1)+2

6(k−1)(n−1) ,

λj ‐ eigenvalue of the expected covariance matrix,
k ‐ number of variables analyzed.

This statistic has asymptotically (for large sample) χ2 distribution with df = k(k−1)
2 − 1 degrees of

freedom.

The p value, determined on the basis of test statistics is compared with the significance level α:

if p ≤ α =⇒ we rejectH0 by adoptingH1,
if p > α =⇒ there are no grounds to rejectH0.

A value of W ≈ 1 is an indication that the sphericity assumption is met. In interpreting the results of
this test, however, it is important to note that it is sensitive to violations of the normality assumption
of the distribution.

SEE EXAMPLE (16.3) The Epsilon and MANOVA corrections apply to repeated measures ANOVA and are
calculated when the sphericity assumption is not met or the variances of the differences between all
pairs of measurements are not close to one another.

16.1.7 The ANOVA for dependent groups with Epsilon correction and MANOVA

Correction of non‐sphericity
The degree to which sphericity is met is represented by the value ofW in the Mauchly test, but
also by the values of Epsilon (ε) calculated with corrections. ε = 1 indicates strict adherence to
the sphericity condition. The smaller the value of Epsilon is compared to 1, the more the spheri‐
city assumption is affected. The lower limit that Epsilon can reach is 1

k−1 .

To minimize the effects of non‐sphericity, three corrections can be used to change the number of
degrees of freedom when testing from an F distribution. The simplest but weakest is the Epsilon
lower bound correction. A slightly stronger but also conservative one is the Greenhouse‐Geisser
correction (1959)[69]. The strongest is the correction by Huynh‐Feldt (1976)[83]. When spheri‐
city is significantly affected, however, it is most appropriate to perform an analysis that does not
require this assumption, namely MANOVA.
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A multidimensional approach ‐ MANOVA
MANOVA i.e. multivariate analysis of variance not assuming sphericity. If this assumption is not
met, it is the most efficient method, so it should be chosen as a substitute for analysis of variance
for repeated measurements. For a description of this method, see univariate MANOVA. Its use
for repeated measures (without the independent groups factor) limits its application to data that
are differences of adjacentmeasurements and provides testing of the same hypothesis as ANOVA
for dependent variables.

Settings window for ANOVA for dependent groups with Epsilon correction and MANOVA is opened
via menu Statistics→Parametric tests→ANOVA for dependent groups or via Wizard.

EXAMPLE 16.3. (pressure.pqs file)
The effectiveness of two treatments for hypertension was analyzed. A sample of 56 patients was col‐
lected and randomly assigned to two groups: group treated with drug A and group treated with drug B.
Systolic blood pressure was measured three times in each group: before treatment, during treatment
and after 6 months of treatment.

Hypotheses for treated with drug A:

H0 : Mean systolic blood pressure is the same
at any stage of treatment ‐ for those treated with drug A,

H1 : At least one stage of treatment with the drug A
mean systolic blood pressure is different.

The hypotheses for those treated with drug B read similar.

Since the data have a normal distribution, we begin our analysis by testing the assumption of sphericity.
We perform the testing for each group separately using a multiple filter.
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Failure to meet the sphericity assumption by the group treated with drug B is indicated by both the
observed values of the covariance and correlationmatrix and the result of theMauchly test (W = 0.68,
p = 0.0063).

We resume our analysis and in the test options window select the primary filter to perform
a repeated‐measures ANOVA ‐ for those treated with drug A, followed by a correction of this analysis
and a MANOVA statistic ‐ for those treated with drug B.

Results for those treated with drug A:
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indicate significant (at the level of significance α = 0.05) differences between mean systolic blood
pressure values (value p < 0.0001 for repeated measures ANOVA). More than 66% of the between‐
conditions variation in outcomes can be explained by the use of drug A (η = 0.66). The differences
apply to all treatment stages compared (POST‐HOC score). The decrease in systolic blood pressure due
to treatment is also significant (p < 0.0001). Thus, we can consider Drug A as an effective drug.

Results for those treated with drug B:
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indicate that there are no significant differences between mean systolic blood pressure values, both
whenweuse epsilon and LambdaWilks (MANOVA) corrections. As little as 17%of the between‐conditions
variation in results can be explained by the use of drug B (η = 0.17).
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16.2 NON‐PARAMETRIC TESTS

16.2.1 The Kruskal‐Wallis ANOVA

The Kruskal‐Wallis one‐way analysis of variance by ranks (Kruskal 1952 [93]; Kruskal and Wallis 1952
[94] ) is an extension of the U‐Mann‐Whitney test on more than two populations. This test is used to
verify the hypothesis that there is no shift in the compared distributions, i.e.,most often the insignificant
differences between medians of the analysed variable in (k ≥ 2) populations (but you need to assume,
that the variable distributions are similar ‐ comparison of rank variances can be checked using Conover’s
rank test).

Additional analyses:

– it is possible to test for a trend in the arrangement of the groups under study by performing the
Jonckheere‐Terpstra test for trend.

Basic assumptions:

– measurement on an ordinal scale or on an interval scale,

– an independent model.

Hypotheses:

H0 : ϕ1 = ϕ2 = ... = ϕk,
H1 : not all ϕj are equal (j = 1, 2, ..., k),

where:
ϕ1, ϕ2, ...ϕk distributions of the analysed variable of each population.

The test statistic is defined by:

H =
1

C

 12

N(N + 1)

k∑
j=1

((∑nj

i=1Rij

)2
nj

)
− 3(N + 1)

 ,

where:
N =

∑k
j=1 nj ,

nj – samples sizes (j = 1, 2, ...k),
Rij – ranks ascribed to the values of a variable for (i = 1, 2, ...nj), (j = 1, 2, ...k),

C = 1−
∑

(t3 − t)

N3 −N
– correction for ties,

t – number of cases included in a tie.

The formula for the test statisticH includes the correction for tiesC. This correction is used, when ties
occur (if there are no ties, the correction is not calculated, because of C = 1).

TheH statistic asymptotically (for large sample sizes) has theχ2 distributionwith the number of degrees
of freedom calculated using the formula: df = (k − 1).

The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.
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The POST‐HOC tests
Introduction to the contrasts and the POST‐HOC tests was performed in the 16.1.2 unit, which relates
to the one‐way analysis of variance.

The Dunn test
For simple comparisons, equal‐size groups as well as unequal‐size groups.

TheDunn test (Dunn 1964[51]) includes a correction for tied ranks (Zar 2010[177]) and is a test corrected
for multiple testing. The Bonferroni or Sidak correction is most commonly used here, although other,
newer corrections are also available, described in more detail in Multiple comparisons.

Example ‐ simple comparisons (comparing 2 selected median / mean ranks with each other):

H0 : θj = θj+1,
H1 : θj ̸= θj+1.

(i) The value of critical difference is calculated by using the following formula:

CD = Zα
c

√√√√√N(N + 1)

12

 k∑
j=1

c2j
nj

,

where:
Zα

c
‐ is the critical value (statistic) of the normal distribution for a given significance

level α corrected on the number of possible simple comparisons c.

(ii) The test statistic is defined by:

Z =

∑k
j=1 cjRj√

N(N+1)
12

(∑k
j=1

c2j
nj

) ,

where:
Rj – mean of the ranks of the j‐th group, for (j = 1, 2, ...k),

The formula for the test statistic Z includes a correction for tied ranks. This correction is applied
whentied ranks are present (when there are notied ranks this correction is not calculated because∑

(t3 − t) = 0).

The test statistic asymptotically (for large sample sizes) has the normal distribution, and the p
value is corrected on the number of possible simple comparisons c.

Conover‐Inman test
The non‐parametric equivalent of Fisher LSD[46], used for simple comparisons of both groups of equal
and different sizes.

(i) The value of critical difference is calculated by using the following formula:

CD =
√

Fα,1,N−k ·

√√√√S2
N − 1−H

N − k

k∑
j=1

c2j
nj

,
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where:

S2 =
1

N − 1

 k∑
j=1

nj∑
i=1

R2
ij −N

(N + 1)2

4


Fα,1,N−k is the critical value (statistic) Snedecor’s F distribution for a given significance
level α and for degrees of freedom respectively: 1 iN − k.

(ii) The test statistic is defined by:

t =

∑k
j=1 cjRj√

S2N−1−H
N−k

∑k
j=1

c2j
nj

,

where:
Rj – The mean ranks of the j‐th group, for (j = 1, 2, ...k),

This statistic follows a t‐Student distribution withN − k degrees of freedom.

The settingswindowwith theKruskal-Wallis ANOVA canbeopened inStatisticsmenu→NonParametric
tests →Kruskal-Wallis ANOVA or in Wizard.

EXAMPLE 16.4. (jobSatisfaction.pqs)
A group of 120 people was interviewed, for whom the occupation is their first job obtained after rece‐
iving appropriate education. The respondents rated their job satisfaction on a five‐point scale, where:

1‐ unsatisfying job,
2‐ job giving little satisfaction,
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3‐ job giving an average level of satisfaction,
4‐ job that gives a fairly high level of satisfaction,
5‐ job that is very satisfying.

We will test whether the level of reported job satisfaction does not change for each category of educa‐
tion.

Hypotheses:

H0 : the level of job satisfaction is the same for each education category,
H1 : at least one education category (one population)

has different levels of job satisfaction.

The obtained value of p = 0.001 indicates a significant difference in the level of satisfaction between
the compared categories of education. Dunn’s POST‐HOC analysis with Bonferroni’s correction shows
that significant differences are between those with primary and secondary education and those with
primary and tertiary education. Slightly more differences can be confirmed by selecting the stronger
POST‐HOC Conover‐Iman.
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In the graph showing medians and quartiles we can see homogeneous groups determined by the POST‐
HOC test. If we choose to present Dunn’s results with Bonferroni correction we can see two homoge‐
neous groups that are not completely distinct, i.e. group (a) ‐ people who rate job satisfaction lower
and group (b)‐ people who rate job satisfaction higher. Vocational education belongs to both of these
groups, which means that people with this education evaluate job satisfaction quite differently. The
same description of homogeneous groups can be found in the results of the POST‐HOC tests.

We can provide a detailed description of the data by selecting descriptive statistics in the analysis win‐
dow and indicating to add counts and percentages to the description.

We can also show the distribution of responses in a column plot.
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16.2.2 The Jonckheere‐Terpstra test for trend

The Jonckheere‐Terpstra test for ordered alternatives described independently by Jonckheere (1954)
[87] and Terpstra (1952)[158] an be calculated in the same situation as the Kruskal‐Wallis ANOVA , as
it is based on the same assumptions. The Jonckheere‐Terpstra test, however, captures the alternative
hypothesis differently ‐ indicating in it the existence of a trend for successive populations.

Hypotheses are simplified to medians:
H0 : θ1 = θ2 = ... = θk,
H1 : θ1 ≥ θ2 ≥ ... ≥ θk, with at least one strict inequality

Note
The term: ”with at least one strict inequality” written in the alternative hypothesis of this test means
that at least the median of one population should be greater than the median of another population in
the order specified.

The test statistic has the form:

Z =

L−
[
N2−

∑k
j=1 n

2
j

4

]
SE

where:
L = – sum of lij values obtained for each pair of compared populations,
lij – number of results higher than a preset value in the next occurring group,

SE =
√

A
72 + B

36N(N−1)(N−2) +
C

8N(N−1) ,

A = N(N − 1)(2N + 5)−
∑k

j=1 nj(nj − 1)(2nj + 5)−
∑g

l=1 tl(tl − 1)(2tl + 5),

B =
∑k

j=1 nj(nj − 1)(nj − 2) ·
∑g

l=1 tl(tl − 1)(tl − 2),

C =
∑k

j=1 nj(nj − 1) ·
∑g

l=1 tl(tl − 1),
g – number of groups of different tied ranks,
tl – umber of cases included in the tied rank,
N =

∑k
j=1 nj ,

nj – sample sizes for (j = 1, 2, ...k).
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Note
To be able to perform a trend analysis, the expected order of the populations must be indicated by
assigning consecutive natural numbers.

The formula for the test statistic Z includes the correction for ties. This correction is applied when
tied ranks are present (when there are no tied ranks the test statistic formula reduces to the original
Jonckheere‐Terpstra formula without this correction).

The statistic Z has asymptotically (for large samples) normal distribution.

With the expected direction of the trend known, the alternative hypothesis is one‐sided and the one‐
sided p‐value is interpreted. The interpretation of the two‐sided p‐valuemeans that the researcher does
not know (does not assume) the direction of the possible trend.
The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

The settingswindowwith the Jonckheere-Terpstra test for trend canbeopened inStatisticsmenu→NonParametric
tests→Kruskal-Wallis ANOVA or in Wizard.

EXAMPLE (16.4) continued (jobSatisfaction.pqs file) It is suspected that better educated people have
high job demands, which may reduce the satisfaction level of the first job, which often does not meet
such demands. Therefore, it is worthwhile to conduct a trend analysis.

Hypotheses:

H0 : No indicated trend in satisfaction with first job
with increasing education,

H1 : There is an indicated trend in the level of satisfaction with the first job.
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To do this, we resume the analysis with the button, select the Jonckheere-Terpstra trend test
option, and assign successive natural numbers to the education categories.

The obtained one‐sided value p < 0.0001 and is less than the set significance level α = 0.05, which
speaks in favor of a trend actually occurring consistent with the researcher’s expectations.
We can also confirm the existence of this trend by showing the percentage distribution of responses
obtained.
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16.2.3 The Conover ranks test of variance

Conover squared ranks test is used, similarly to Fisher‐Snedecor test (for k = 2), Levene test and Brown‐
Forsythe test (for k >= 2) to verify the hypothesis of similar variation of the tested variable in seve‐
ral populations. It is the non‐parametric counterpart of the tests indicated above, by that it does not
assume normality of the data distribution and is based on the ranks[46].However, this test examines
variation and therefore distances to the mean, so the basic condition for its use is:

− measurement on an interval scale,

Hypotheses:

H0 : the dispersion of the data in the populations being compared is the same,
H1 : at least two populations differ in the amount of data dispersion.

The test statistic has the form:

χ2 =
1

D2

 k∑
j=1

S2
j

nj
−NS

2


where:
N = n1 + n2 + ...+ nk,
nj – individual group sizes,
Sj –sum of ranks squares in j‐th group,
S = 1

N

∑k
j=1 §j – mean of all ranks squares,

D2 = 1
N−1

(∑N
ji=1R

4
i −NS

2
)
,

Ri – ranks for values representing the distance of the measurement from the mean of a
given group.

This statistic has a χ2distribution with k − 1 degrees of freedom.
The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.
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The settingswindowwith theConover ranks test of variance canbeopened inStatisticsmenu→NonParametric
tests→Kruskal-Wallis ANOVA, optionConover ranks test of varianceor textsfStatisticsmenu→NonParametric
tests→Mann-Whitney, option Conover ranks test of variance.

EXAMPLE 16.5. (surgeryMethod.pqs file)
Patients have been prepared for spinal surgery. The patients will be operated on by one of three me‐
thods. Preliminary allocation of each patient to each type of surgery has beenmade. At a later stage we
intend to compare the condition of the patients after the surgeries, therefore we want the groups of
patients to be comparable. They should be similar in terms of the height of the interbody space (WPMT)
before surgery. The similarity should concern not only the average values but also the differentiation
of the groups.

The distribution of the data was checked
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It is found that for the two methods, the WPMT operation exhibits deviations from normality, largely
caused by skewness of the data. Further comparative analysis will be conducted using the Kruskal‐Wallis
test to compare whether the level of WPMT differs between the methods, and the Conover test to
indicate whether the spread of WPMT scores is similar in each method.
Hypotheses for Conover’s variance test:

H0 : The diversity (scope) of WPMT is the same for each method of operation,
H1 : WPMT diversity (range) is higher/lower for at least one method of operation.

Hypotheses for Kruskal‐Wallis test:

H0 : WPMT level is the same for each operation method,
H1 : WPMT level is higher/lower for at least one method of operation.
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First, the value of Conover’s test of variance is interpreted, which indicates statistically significant dif‐
ferences in the ranges of the groups compared (p=0.0022). From the graph, we can conclude that the
differences are mainly in group 3. Since differences in WPMT were detected, the interpretation of the
result of the Kruskal‐Wallis test comparing the level of WPMT for these methods should be cautious,
since this test is sensitive to heterogeneity of variance. Although the Kruskal‐Wallis test showed no
significant differences (p=0.2057), it is recommended that patients with low WPMT (who were main‐
ly assigned to surgery with method B) be more evenly distributed, i.e. to see if they could be offered
surgery with method A or C. After reassignment of patients, the analysis should be repeated.

16.2.4 The Friedman ANOVA

The Friedman repeated measures analysis of variance by ranks – the Friedman ANOVA ‐ was described
by Friedman (1937)[64]. This test is used when the measurements of an analysed variable are made
several times (k ≥ 2) each time in different conditions. It is also used when we have rankings coming
from different sources (form different judges) and concerning a few (k ≥ 2) objects, but we want to
assess the grade of the rankings agreement.

Copyright ©2010‐2023 PQStat Software – All rights reserved 257



16 COMPARISON ‐ MORE THAN TWO GROUPS

Iman Davenport (1980[84]) has shown that in many cases the Friedman statistic is overly conservative
and hasmade somemodification to it. This modification is the non‐parametric equivalent of the ANOVA
for dependent groups which makes it now recommended for use in place of the traditional Friedman
statistic.

Additional analyses:

– It is possible to takemissing data into account by using the Acceptmissing data option, calculating
Durbin ANOVA or Skillings‐Mack ANOVA;

– it is possible to test the trend in the arrangement of the studied groups by performing Page test
for trend.

Basic assumptions:

– measurement on an ordinal scale or on an interval scale,

– a dependent model.

Hypotheses relate to the equality of the sumof ranks for successivemeasurements (Rj) or are simplified
to medians (θj)

H0 : θ1 = θ2 = ... = θk,
H1 : not all θj are equal (j = 1, 2, ..., k),

where:
θ1, θ2, ...θk medians for an analysed features, in the followingmeasurements from the exa‐
mined population.

Two test statistics are determined: the Friedman statistic and the Iman‐Davenport modification of this
statistic.

The Friedman statistic has the form:

T1 =
1

C

 12

nk(k + 1)

 k∑
j=1

(
n∑

i=1

Rij

)2
− 3n(k + 1)

 ,

where:
n – sample size,
Rij – ranks ascribed to the following measurements (j = 1, 2, ...k), separately for the
analysed objects (i = 1, 2, ...n),

C = 1−
∑

(t3 − t)

n(k3 − k)
– correction for ties,

t – number of cases included in a tie.

The Iman‐Davenport modification of the Friedman statistic has the form:

T2 =
(nj − 1)T1

nj(k − 1)− T1

The formula for the test statistic T1 and T2 includes the correction for ties C. This correction is used,
when ties occur (if there are no ties, the correction is not calculated, because of C = 1).

The T1 statistic has asymptotically ((for large sample sizes) has the χ2 distribution with df = k − 1
degrees of freedom.
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The statistic T2 follows the Snedecor’s F distribution with df1 = k − 1 i df2 = (nj − 1)(k − 1) degrees
of freedem.

The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

The POST‐HOC tests
Introduction to the contrasts and the POST‐HOC tests was performed in the 16.1.2 unit, which relates
to the one‐way analysis of variance.

The Dunn test
For simple comparisons (frequency in particular measurements is always the same).

The Dunn test (Dunn 1964[51]) is a corrected test due to multiple testing. The Bonferroni or Sidak
correction is most commonly used here, although other, newer corrections are also available and are
described in more detail in the Multiple Comparisons section.

Hypotheses:

Example ‐ simple comparisons (comparison of 2 selected medians):

H0 : θj = θj+1,
H1 : θj ̸= θj+1.

(i) The value of critical difference is calculated by using the following formula:

CD = Zα
c

√
k(k + 1)

6n
,

where:
Zα

c
‐ is the critical value (statistic) of the normal distribution for a given significance

level α corrected on the number of possible simple comparisons c.

(ii) The test statistic is defined by:

Z =

∑k
j=1 cjRj√
k(k+1)

6n

,

where:
Rj – mean of the ranks of the j‐th measurement, for (j = 1, 2, ...k),

The test statistic asymptotically (for large sample size) has normal distribution, and the p value is
corrected on the number of possible simple comparisons c.

Conover‐Inman test
Non‐parametric equivalent of Fisher LSD[46], sed for simple comparisons (counts acrossmeasurements
are always the same).

(i) he value of critical difference is calculated by using the following formula:

CD =
√

Fα,1,df2 ·

√√√√2
(
njA−

∑t
j=1R

k
j

)
(nj − 1)(k − 1)

,
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where:

A =

nj∑
i=1

k∑
j=1

R2
ij – sum of squares for ranks,

Fα,1,df2 to critical value (statistic) Snedecor’s F distribution for a given significance level
α and for degrees of freedom respectively: 1 and df2.

(ii) The test statistic is defined by:

t =

∑k
j=1 cjRj√

2(njA−
∑t

j=1 R
k
j )

(nj−1)(k−1)

,

where:
Rj – the sum of ranks of jth measurement, for (j = 1, 2, ...k),

The test statistic hast‐Student distribution with df2 degrees of freedem.

The settings window with the Friedman ANOVA can be opened in Statistics menu→NonParametric
tests →Friedman ANOVA, trend test or in Wizard

EXAMPLE 16.6. (chocolate bar.pqs file)
Quarterly sale of some chocolate bar was measured in 14 randomly chosen supermarkets. The study
was started in January and finished in December. During the second quarter, the billboard campaign
was in full swing. Let’s check if the campaign had an influence on the advertised chocolate bar sale.
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Shop Quarter I Quarter II Quarter III Quarter IV
SK1 3415 4556 5772 5432
SK2 1593 1937 2242 2794
SK3 1976 2056 2240 2085
SK4 1526 1594 1644 1705
SK5 1538 1634 1866 1769
SK6 983 1086 1135 1177
SK7 1050 1209 1245 977
SK8 1861 2087 2054 2018
SK9 1714 2415 2361 2424
SK10 1320 1621 1624 1551
SK11 1276 1377 1522 1412
SK12 1263 1279 1350 1490
SK13 1271 1417 1583 1513
SK14 1436 1310 1357 1468

Hypotheses:

H0 : there is a lack of significant difference in sale values, in the compared
quarters, in the population represented by the whole sample,

H1 : the difference in sale values, between at least 2 quarters, is significant,
in the population represented by the whole sample.

Comparing the p‐value of the Friedman test (as well as the p‐value of the Iman‐Davenport correction
of the Friedman test) with a significance level α = 0.05, we find that sales of the bar are not the sa‐
me in each quarter. The POST‐HOC Dunn analysis performed with the Bonferroni correction indicates
differences in sales volumes pertaining to quarters I and III and I and IV, and an analogous analysis per‐
formed with the stronger Conover‐Iman test indicates differences between all quarters except quarters
III and IV.

Copyright ©2010‐2023 PQStat Software – All rights reserved 261



16 COMPARISON ‐ MORE THAN TWO GROUPS

Copyright ©2010‐2023 PQStat Software – All rights reserved 262



16 COMPARISON ‐ MORE THAN TWO GROUPS

In the graph, we presented homogeneous groups determined by the Conover‐Iman test.

We can provide a detailed description of the data by selecting Descriptive statistics in the analysis win‐

dow .

If the data were described by an ordinal scale with few categories, it would be useful to present it also
in numbers and percentages. In our example, this would not be a good method of description.

16.2.5 The Page test for trend

The Page test for ordered alternative described in 1963 by Page E. B. [128] can be computed in the
same situation as Friedman’s ANOVA, since it is based on the same assumptions. However, Page’s test
captures the alternative hypothesis differently ‐ indicating that there is a trend in subsequent measu‐
rements.

Hypotheses involve equality of the sum of ranks for successive measurements or are simplified to me‐
dians:

H0 : θ1 = θ2 = ... = θk,
H1 : θ1 ≥ θ2 ≥ ... ≥ θk, with at least one strict inequality

Note
The term: ”with at least one strict inequality” written in the alternative hypothesis of this test means
that at least one median should be greater than the median of another group of measurements in the
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order specified.

The test statistic has the form:

Z =
L−

[
nk(k+1)2

4

]
√

n(k3−k)2

144(k−1)

where:
L =

∑k
j=1Rjcj ,

Rj – the sum of ranks of jth measurement,
cj –the weight for j‐th measurement informing about the natural order of this measure‐
ment among other measurements (weights are consecutive natural numbers).

Note
In order to perform a trend analysis, the expected ordering of measurements must be indicated by
assigning consecutive natural numbers to successive measurement groups. These numbers are treated
as weights in the analysis c1, c2, ..., ck.

The formula for the test statistic Z does not include a correction for ties, making it somewhat more
conservative when tied ranks are present. However, using a correction for tied ranks for this test is not
recommended.

The statistic Z has asymptotically (for large sample) normal distribution.

With the expected direction of the trend known, the alternative hypothesis is one‐sided and the one‐
sided p‐value is interpreted. Interpreting a two‐sided p‐value means that the researcher does not know
(does not assume) the direction of the possible trend.
The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

The settings window with the Page test for trend can be opened in Statistics menu→NonParametric
tests →Friedman ANOVA, trend test or in Wizard
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EXAMPLE (16.6) continued (chocolate bar.pqs file) The expected result of the intensive advertising cam‐
paign conducted by the company is a steady increase in sales of the offered bar.

Hypotheses:

H0 : no indicated trend in bar sales,
H1 : there is an indicated trend in bar sales.
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Comparing a one‐sided p < 0.0001 with a significance level α = 0.05, we find that the campaign
produced the expected trend of increased product sales.

16.2.6 The Durbin’s ANOVA (missing data)

Durbin’s analysis of variance of repeated measurements for ranks was proposed by Durbin (1951)[52].
This test is used when measurements of the variable under study are made several times – a similar
situation in which Friedman’sANOVA is used. The original Durbin test and the Friedman test give the
same result whenwe have a complete data set. However, Durbin’s test has an advantage – it can also be
calculated for an incomplete data set. At the same time, data deficiencies cannot be located arbitrarily,
but the data must form a so‐called balanced and incomplete block:

– the number of measurements for each object is k (k ≤ t),

– each measurement is made on r objects (r ≤ b),

– the number of objects for which the same pair of measurements was taken simultaneously is
constant and equal to λ.

where:
t – total number of considered measurements,
b – total number of examined objects.

Basic assumptions:

– measurement on an ordinal scale or on an interval scale,

– a dependent model.

Hypotheses involve equality of the sum of ranks for successive measurements (Rj) or are simplified to
medians (θj):

H0 : θ1 = θ2 = ... = θk,
H1 : not all θj are equal (j = 1, 2, ..., k),

Copyright ©2010‐2023 PQStat Software – All rights reserved 266



16 COMPARISON ‐ MORE THAN TWO GROUPS

Two test statistics of the following form are determined:

T1 =
(t− 1)

[∑t
j=1R

2
j − tC

]
A− C

,

T2 =
T1/(t− 1)

(b(k − 1)− T1)/(bk − b− t+ 1)
,

where:
Rj – sum of ranks for successive measurements (j = 1, 2, ...t),
Rij – ranks assigned to successive measurements, separately for each of the studied ob‐
jects (i = 1, 2, ...b),

A =
b∑

i=1

t∑
j=1

R2
ij – sum of squared ranks,

C =
bk(k + 1)2

4
– correction coefficient.

The formula for T1 and T2 statistics includes a correction for tied ranks.

For complete data, the T1 statistic is the same as the Friedman test. It has asymptotically (for large
sample sizes) χ2 distribution with df = t− 1 degrees of freedom.

The T2 statistic is the equivalent of Friedman’s Iman‐Davenport ANOVA adjustment, so it follows Sne‐
decor’s F distribution with df1 = t− 1 i df2 = bk − b− t+ 1 degrees of freedom. It is now considered
to be more precise than the T1 statistic and is recommended for use with the T1 statistic[46].

The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

Testy POST‐HOC
Introduction to the contrasts and the POST‐HOC tests was performed in the 16.1.2 unit, which relates
to the one‐way analysis of variance.

Conover‐Inman test
Used for simple comparisons (the counts in each measurement are always the same).

Hypotheses:

Example ‐ simple comparisons (comparing 2 selected medians / rank sums between each other):

H0 : θj = θj+1,
H1 : θj ̸= θj+1.

(i) The value of critical difference is calculated by using the following formula:

CD = t1−α/2,bk−b−t+1

√
(A− C)2r

bk − b− t+ 1

(
1− T1

b(k − 1)

)
,
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where:
t1−α/2,bk−b−t+1 – is the critical value (statistic) of the t‐Student distribution for a given
significance level α and df = bk − b− t+ 1 degrees of freedom.

(ii) The test statistic has the form:

t =

∑k
j=1 cjRj√

(A−C)2r
bk−b−t+1

(
1− T1

b(k−1)

) ,
The test statistic has t‐Student distribution with df = bk − b− t+ 1 degrees of freedom.

The settings window with the Durbin’s ANOVA can be opened in Statistics menu→NonParametric
tests →Friedman ANOVA, trend test or in Wizard

Note
For records with missing data to be taken into account, you must check the Accept missing data option.
Empty cells and cells with non‐numeric values are treated as missing data. Only records with more than
one numeric value will be analyzed.

EXAMPLE 16.7. (mirror.pqs file)
An experiment was conducted among 20 patients in a psychiatric hospital (Ogilvie 1965)[125]. This
experiment involved drawing straight lines according to a presented pattern. The pattern represented 5
lines drawn at different angles (0o, 22.5o, 45o, 67.5o, 90o) relative to the indicated center. The patients’
task was to reproduce the lines while having their hand covered. The time at which the patient drew the
linewas recorded as the result of the experiment. Ideally, each patientwould draw a line from all angles,
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but elapsed time and fatigue would have a significant impact on performance. In addition, it is difficult
to keep the patient interested and willing to cooperate for an extended period of time. Therefore, the
project was planned and conducted in balanced and incomplete blocks. Each of the 20 patients traced
a line at two angles (there were five possible angles). Thus, each angle was drawn eight times. The time
at which each patient drew a line at a given angle was recorded in the table.

patient number 0o 22.5o 45o 67.5o 90o

1 7 15
2 20 72
3 8 26
4 33 36
5 7 16
6 68 67
7 33 64
8 34 12
9 10 96
10 29 59
11 17 9
12 100 15
13 16 32
14 19 32
15 36 39
16 44 54
17 16 38
18 17 12
19 37 11
20 56 6

We want to see if the time taken to draw each line is completely random, or if there are lines that
took more or less time to draw.

Hypotheses:

H0 : there is no significant difference between the time
taken by patients to draw each line,

H1 : at least one line is drawn in shorter/longer time.

Copyright ©2010‐2023 PQStat Software – All rights reserved 269



16 COMPARISON ‐ MORE THAN TWO GROUPS

Comparing the p = 0.0145 for the T2 statistic (or the p = 0.0342 for the T1 statistic) with the α =
0.05 significance level, we find that the lines are not drawn at the same time. The POST‐HOC analysis
performed indicates that there is a difference in the time taken to draw the line at angle 0o. It is drawn
faster than the lines at the angle of 22.5o, 45o and 67.5o.
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The graph shows homogeneous groups indicated by the post‐hoc test.
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16.2.7 The Skillings‐Mack ANOVA (missing data)

The analysis of variance of repeated measures for Skillings‐Mack ranks was proposed by Skillings and
Mack in 1981 [152]. t is a test that can be used when there are missing data, but the missing data need
not occur in any particular setting. However, each site must have at least two observations. If there are
no tied ranks and no gaps are present it is the same as the Friedman’s ANOVA, and if data gaps are
present in a balanced arrangement it corresponds to the results of Durbin’s ANOVA.

Basic assumptions: Basic assumptions:

– measurement on an ordinal scale or on an interval scale,

– a dependent model.

Hypotheses relate to the equality of the sumof ranks for successivemeasurements (Rj) or are simplified
to medians (thetaj)

H0 : θ1 = θ2 = ... = θk,
H1 : nie wszystkie θj są sobie równe (j = 1, 2, ..., k),

The test statistic has the form:
χ2 = AΣ−1

0 AT

where:
A = (A1, A2, ..., Ak−1

Aj =
∑n

i=1

√
12

si+1

(
Rij − si+1

2

)
,

si – number of observations for i‐th object,
Rij – ranks assigned to successive measurements (j = 1, 2, ...k), separately for each study
object (i = 1, 2, ...n), with ranks for missing data equal to the average rank for the object,
Σ0 – matrix determining the covariances for A at the truth ofH0[152].

When each pair of measurements occurs simultaneously for at least one observation, this statistic has
asymptotically (for large sample sizes) the χ2 distribution with k − 1 degrees of freedom.

The p value, designated on the basis of the test statistic, is compared with the significance level α:
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if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

The settingswindowwith theSkillings-Mack ANOVA canbeopened inStatisticsmenu→NonParametric
tests →Friedman ANOVA, trend test or in Wizard

Note
For records with missing data to be taken into account, you must check the Accept missing data option.
Empty cells and cells with non‐numeric values are treated as missing data. Only records containing mo‐
re than one numeric value will be analyzed.

EXAMPLE 16.8. (polling.pqs file)
A certain university teacher, wanting to improve the way he conducted his classes, decided to verify
his teaching skills. In several randomly selected student groups, during the last class, he asked them
to fill in a short anonymous questionnaire. The survey consisted of six questions about how the six
specified parts of the material were illustrated. The students could rate it on a 5‐point scale, where 1
‐ the way of presenting the material was completely incomprehensible, 5 ‐ a very clear and interesting
way of illustrating the material. The data obtained in this way turned out to be incomplete due to the
fact that students did not answer questions about the part of the material they were absent on. In the
30‐person group completing the survey, only 15 students provided complete responses. Performing an
analysis that does not account for data gaps (in this case, a Friedman analysis) will have limited power
by cutting the group size so drastically and will not lead to the detection of significant differences. Data
gaps were not planned for and are not present in the balanced block, so this task cannot be performed
using Durbin’s analysis along with his POST‐HOC test.

Hypotheses:
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H0 : there is no significant difference in the evaluations of the different parts of the material by
studentów,

H1 : at least one part of the material is assessed differently by students.

The results of the ANOVA Skillings‐Mack analysis are presented in the following report:

The p value obtained should be treated with caution due to possible tied ranks. However, for this study,
the p = 0.0067 is well below the accepted significance level of α = 0.05, indicating that significant
differences exist. The differences in responses can be observed in the graph; however, there is no POST‐
HOC analysis available for this test.
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16.2.8 The Chi‐square test for multidimensional contingency tables

The χ2 test for multidimensional contingency tables is an extension to the χ2 test for (R × C) tables
for more than two features.

Basic assumptions:

− measurement on a nominal scale ‐ any order is not taken into account,

− an independent model,

− large expected frequencies (according to the Cochran interpretation (1952)[40].

Hypotheses:

H0 : Oij... = Eij... for all categories,
H1 : Oij... ̸= Eij... for at least one category,

where:
Oij... andEij...−observed frequencies in a contingency table and the corresponding expec‐
ted frequencies.

The test statistic is defined by:

χ2 =

r∑
i=1

c∑
j=1

∑
...
∑ (Oij... − Eij...)

2

Eij...
.

This statistic asymptotically (for large expected frequencies) has the χ2 distribution with a number of
degrees of freedom calculated using the formula: df = (r − l)(c− 1)(l − 1) + (r − l)(c− 1) + (r −
1)(l − 1) + (c− 1)(l − 1) ‐ for 3‐dimensional tables.

The p value, designated on the basis of the test statistic, is compared with the significance level α:
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if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

The settings window with the Chi-square (multidimensional) test can be opened in Statistics menu→
NonParametric tests (unordered categories)→Chi-square (multidimensional) or in Wizard.

Note
This test can be calculated only on the basis of raw data.

16.2.9 The Q‐Cochran ANOVA

The Q‐Cochran analysis of variance, based on the Q‐Cochran test, is described by Cochran (1950)[39].
This test is an extended McNemar test for k ≥ 2 dependent groups. It is used in hypothesis verification
about symmetry between several measurementsX(1), X(2), ..., X(k) for theX feature. The analysed
feature can have only 2 values ‐ for the analysis, there are ascribed to them the numbers: 1 and 0.

Basic assumptions:

– measurement on a nominal scale (dichotomous variables – it means the variables of two catego‐
ries),

– a dependent model.

Hypotheses:

H0 : all the ”incompatible” observed frequencies are equal,
H1 : not all the ”incompatible” observed frequencies are equal,
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where:
”incompatible” observed frequencies – the observed frequencies calculated when the va‐
lue of the analysed feature is different in several measurements.

The test statistic is defined by:

Q =
(k − 1)

(
kC − T 2

)
kT −R

where:
T =

∑n
i=1

∑k
j=1 xij ,

R =
∑n

i=1

(∑k
j=1 xij

)2
,

C =
∑k

j=1 (
∑n

i=1 xij)
2,

xij – the value of j‐th measurement for i‐th object (so 0 or 1).

This statistic asymptotically (for large sample size) has the χ2 distribution with a number of degrees of
freedom calculated using the formula: df = k − 1.

The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

The POST‐HOC tests
Introduction to the contrasts and the POST‐HOC tests was performed in the 16.1.2 unit, which relates
to the one‐way analysis of variance.

The Dunn test
For simple comparisons (frequency in particular measurements is always the same).

Hypotheses:

Example ‐ simple comparisons (for the difference in proportion in a one chosen pair of measure‐
ments):

H0 : the chosen ”incompatible” observed frequencies are equal,
H1 : the chosen ”incompatible” observed frequencies are different.

(i) The value of critical difference is calculated by using the following formula:

CD = Zα
c

√
2

kT −R

n2k(k − 1)
,

where:
Zα

c
‐ is the critical value (statistic) of the normal distribution for a given significance

level α corrected on the number of possible simple comparisons c.

(ii) The test statistic is defined by:

Z =

∑k
j=1 cjpj√
2 kT−R
n2k(k−1)

,

where:
pj – the proportion j‐th measurement (j = 1, 2, ...k),
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The test statistic asymptotically (for large sample size) has the normal distribution, and the p value
is corrected on the number of possible simple comparisons c.

The settings window with the Cochran Q ANOVA can be opened in Statistics menu→ NonParametric
tests→Cochran Q ANOVA or in Wizard.

Note
This test can be calculated only on the basis of raw data.
EXAMPLE 16.9. (test.pqs file)
We want to compare the difficulty of 3 test questions. To do this, we select a sample of 20 people from
the analysed population. Every person from the sample answers 3 test questions. Next, we check the
correctness of answers (an answer can be correct or wrong). In the table, there are following scores:
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No. question 1 answer question 2 answer question 3 answer
1 correct correct wrong
2 wrong correct wrong
3 correct correct correct
4 wrong correct wrong
5 wrong correct wrong
6 wrong correct correct
7 wrong wrong wrong
8 wrong correct wrong
9 correct correct wrong
10 wrong correct wrong
11 wrong wrong wrong
12 wrong wrong correct
13 wrong correct wrong
14 wrong wrong correct
15 correct wrong wrong
16 wrong wrong wrong
17 wrong correct wrong
18 wrong correct wrong
19 wrong wrong wrong
20 correct correct wrong

Hypotheses:

H0 : The individual questions received the same number of correct answers,
in the analysed population,

H1 : There are different numbers of correct and wrong answers in individual test questions,
in the analysed population.

Comparing the p value p = 0.0077with the significance levelα = 0.05we conclude that individual test
questions have different difficulty levels. We resume the analysis to perform POST‐HOC test by clicking

, and in the test option window, we select POST‐HOC Dunn.
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The carried out POST‐HOC analysis indicates that there are differences between the 2‐nd and 1‐st qu‐
estion and between questions 2‐nd and 3‐th. The difference is because the second question is easier
than the first and the third ones (the number of correct answers the first question is higher).
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17 Multicomparisons

Simultaneous testing of multiple hypotheses (the so‐called family of hypotheses) carries the risk of
increasing the error α, which is a major problem in the multicomparison field. When the error α incre‐
ases, it means that the null hypothesis is too often rejectedwhen it is true. That is, we too often indicate
that there are differences, when in fact there are none. To protect against an increase in α one strategy
is to adjust (decrease) the level of α or to adjust (increase) the p‐values of the tests accordingly. The
best known correction is the Bonferroni[2] correction, which is also the most conservative. The Sidak
(1967)[150] correction is somewhat more liberal. Both corrections have received several sequential im‐
provements that increase their power. The program uses the step‐up Holm’s (1979)[79] procedure and
the step‐down Hochberg’s (1988[78] procedure. Themost powerful among the proposed corrections is
Benjamini’s (1995)[19] modified Hochberg’s procedure, which does not directly control the error α but
minimizes the expected percentage of false differences that occur among detected differences.

If we indicate by c the number of hypotheses being tested, then the adjustments to multicomparisons
can be described as follows:

• Bonferroni’s correction
It involves multiplying each test probability by the total number of tests performed (or dividing
the significance level by that number).

The p‐value adjustment:
p(Bonferroni,i) = pi · c

The significance level α adjustment:

α(Bonferroni,i) =
αi

c

• Sidak’s correction
This correction is more powerful than the Bonferroni’s correction (therefore it is becoming incre‐
asingly popular).

The p‐value adjustment:
p(Sidak,i) = 1− (1− pi)

c

The significance level α adjustment::

α(Sidak,i) = 1− (1− αi)
1/c

• Bonferroni‐Holm’s correction
It involves using Holm’s multi‐step procedure for the Bonferroni’s correction. The procedure be‐
gins with sorting consecutive values of pi (p1, p2, ...pc) in an ascending order. Bonferroni’s correc‐
tion is then applied to each successive value of pi (with a corresponding reduction in the number
of hypotheses left to test). As a result, all hypotheses that are tested after the first statistically
insignificant value of pi are also insignificant.

The p‐value adjustment:
p(Bonferroni,i) = pi · (c− i+ 1)

• Sidak‐Holm’s correction
It involves using Holm’s multi‐step procedure for Sidak’s correction. The procedure begins with
sorting consecutive values of pi(p1, p2, ...pc) in an ascending order. The Sidak correction is then
applied to each successive value of pi (with a corresponding reduction in the number of hypothe‐
ses left to test). As a result, all hypotheses that are tested after the first statistically insignificant
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value of pi are also insignificant.

The p‐value adjustment:
p(Sidak,i) = 1− (1− pi)

c−i+1

• Bonferroni‐Hochberg’s correction
It involves the use of the multi‐step Hochberg’s procedure for the Bonferroni’s correction. The
procedure begins with sorting consecutive values of pi (pc, pc−1, ..., p1) in a descending order.
Bonferroni’s correction is then applied to each successive value of pi (with a corresponding re‐
duction in the number of hypotheses left to test). As a result, all hypotheses that are tested after
the first statistically insignificant value of pi are also insignificant.

The p‐value adjustment:
p(Bonferroni,i) = pi · (c− i+ 1)

• Sidak‐Hochberg’s correction
It involves the use of Hochberg’s multi‐step procedure for Sidak’s correction. The procedure be‐
gins with sorting consecutive values of pi (pc, pc−1, ..., p1) in a descending order. A Sidak correc‐
tion is then applied to each successive value of pi (with a corresponding reduction in the number
of hypotheses left to test). As a result, all hypotheses that are tested after the first statistically
insignificant value of pi are also insignificant.

Adjustment of the p value:
p(Sidak,i) = 1− (1− pi)

c−i+1

• Benjamini‐Hochberg’s correction
It involves the use of the multi‐step Hochberg procedure for the Benjamini’s correction which is
a modified version of the Bonferroni’s correction. The procedure starts with sorting consecutive
values of pi (pc, pc−1, ..., p1) in a descending order. Benjamini’s correction is then applied to each
successive value of pi (with a corresponding reduction in the number of hypotheses left to test).
As a result, all hypotheses that are tested after the first statistically insignificant value of pi are
also insignificant.

Adjustment of the p value:
p(BH,i) = pi

c

i

To perform a multicomparison correction, consecutive p values are entered into one column of the
datasheet.
Thewindowwith themulticomparison settings is opened viamenu Statistics→Corrections for multiple
comaprisons.
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Note
A family of hypotheses can be defined in many ways. The most common are hypotheses within the
POST‐HOC procedure, i.e., the performing of multiple tests in a simultaneous comparison of several
groups under study. Tests performed as part of a Hotelling‐type analysis may also constitute such a fa‐
mily. Families of hypotheses are also found in many geographical analyses. Wherever multiple minor
hypotheses are analyzed as part of an overall hypothesis, the multicomparisons correction may be ap‐
plicable.

Example (16.4) continued (jobSatisfaction.pqs file)
This study tested whether job satisfaction was the same for the four education categories. The family
of hypotheses here was made up of hypotheses derived from pairwise comparisons of all groups. To
compare all 4 groups, 6 pairs of comparisons were created. In each case, the null hypothesis was that
there were no differences in satisfaction among the pairs analyzed. To take advantage of several propo‐
sed corrections of multicomparisons, the analysis was conducted using Dunn’s uncorrected POST‐HOC
test.

The resulting p‐values were given as data for correction of multicomparisons yielding the following
results:
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As a result, differences in job satisfactionwere found to be statistically significant for twopairs of compa‐
risons (elementary vs. secondary education and elementary vs. higher education). Using the Benjamini‐
Hochberg’s correction only, differences could be found in three pairs.

OTHER EXAMPLES: example (??), example (??)
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18 UNIVARIATE MANOVA

Beforehand, we recommend that you read the T‐square Hotelling’s analysis.

Multivariate analysis of variance, is an extension of one‐way ANOVA for independent groups. It is used
to verify the hypothesis that the means of the k variables under study are equal across several (m ≥ 2)
populations.

Staying with the ANOVA method involves comparing (m ≥ 2) populations multiple times (separately
for each variable) without taking into account the variables’ correlation with each other. A MANOVA‐
type analysis, on the other hand, examines differences between populations one at a time for multiple
variables, taking into account their correlation. In addition, the MANOVA approach is used as an alter‐
native to the ANOVA for dependent groups because it does not require the sphericity assumption to be
met.

Basic application conditions:

– measurement on an interval scale,

– A multivariate normal distribution in each population or normality of the distribution of each
studied variable in each population,

– independent model,

– equality of the covariance matrix or equality of variances of the examined variables for the com‐
pared populations ‐ a condition particularly important in the case of groups of different sizes.

Hypotheses:

H0 : µ1 = µ2 = ... = µm,
H1 : not all µi are equal,

where:
µi = (µi1, µi2, ..., µik) ‐ means of variables in i‐th population,
(i = 1, 2, ...,m),
(j = 1, 2, ..., k).

We use several coefficients in MANOVA analyses. The most widely known is the Wilks’ Lambda. The
Pillai‐Bartlett trace is themost conservative, but relatively robust to violations of theMANOVA assump‐
tions and preferred for small sample sizes. The Hotelling‐Lawley trace, on the other hand, is the least
conservative of the three proposed tests. Work on the development of these techniques was begun by
Wilks (1932)[173], Pillai(1955)[131], Lawley(1938)[96], Hotelling(1951)[82], and Roy(1939)[139].

Test statistics are based on Sums of Squares and Cross Products (SSCP ) matrices. The total matrix
T = SSCP is broken down into two matrices, the first of which is related to the hypothesis being
tested and is indicated by H (in this case the matrix of between‐group sums of squares and mixed
products), and the second of which is related to the residuals (errors) and is indicated by E (matrix of
within‐group sums of squares and mixed products).

Wilks’ Lambda
Lambda value is defined as follows:

Λ =
|E|

|H + E|
The test statistic is in the form of:

F =
1− Λ

1
b

Λ
1
b

df2
df1
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18 UNIVARIATE MANOVA

where:
df1 = k(m− 1), df2 = ab− c,
a, b, c ‐ coefficients dependent on the number of variables analyzed and the number
of populations compared.

Hotelling‐Lawley trail
The Hotelling‐Lawley trace is defined as follows:

T0 = trace(HE−1)

The test statistic is in the form of:
F =

T 2
0

s

df2
df1

where:
df1 = s(2t+ s+ 1), df2 = 2(su+ 1),
s, t, u ‐ coefficients dependent on the number of variables analyzed and the number
of populations compared.

Pillai‐Bartlett trail
The Pillai‐Bartlett trace is defined as follows:

V = trace(H(H + E)−1)

The test statistic is in the form of:
F =

V

s− V

df2
df1

where:
df1 = s(2t+ s+ 1), df2 = s(2u+ s+ 1),
s, t, u ‐ coefficients dependent on the number of variables analyzed and the number
of populations compared.

Each of the test statistics above is subject to Snedecor’s F distribution with df1 and df2 degrees of fre‐
edom.

Designated based on the test statistics value p is compared with the significance level α:

if p ≤ α =⇒ we rejectH0 przyjmującH1,
if p > α =⇒ there is no basis to rejectH0.

Effect size ‐ partial η2
This size indicates the proportionof explained variance to total variance associatedwith a given factor. In
a one‐factor MANOVA model for independent groups, it indicates what proportion of the within‐group
variability in outcomes can be attributed to the factor under study that determines the independent
groups.

η2 =
F · df1

F · df1 + df2

Effect size ‐ contrasts, one‐dimensional analysis
When the analysis performed is to compare selected populations, or a selected set of populations, then
we perform a contrasts analysis. This analysis is analogous to the contrasts in one‐dimensional analysis
but takes into account the interrelatedness of the variables.

For effect sizes, one can also determine simultaneous confidence intervals or confidence intervals with
Bonferroni correction. When using these intervals, however, it is important to note that they do not ta‐
ke into account associations between variables (which MANOVA takes into account) but only multiple
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testing.

When looking for variables with differences, we can also use a one‐dimensional approach. We then
perform the comparisons of the ANOVA for independent groups separately for each variable. Unfor‐
tunately, this will not account for intercorrelations, but the p values obtained from the ANOVA can be
adjusted in the multiple comparisons section.

Note
The basic principle of MANOVA (as well as Hotelling’s tests) is the construction of ”multivariate ellip‐
ses” of confidence intervals around the centers determined by the means (see example interpretation
of Hotelling’s test ellipses for a single sample). As a result, using one‐dimensional analysis (which does
not take into account the interrelationships between variables) we are often unable to obtain identical
results.

The settings window for the Single-factor MANOVA for independent groups is opened via menu Sta-
tistics→Parametric tests→MANOVA for independent groups.

EXAMPLE 18.1. (sport.pqs file)
A group of athletes was studied to obtain information on health parameters such as:
WBC ‐ White Blood Count,
Height [cm],
Body weight [kg].

We’d like to know:

1. Whether playing three types of sports professionally: ”team games” (such as: basketball, volley‐
ball, etc.) ”running” (such as: 100m, 400m, etc.) ”aquatic” (like: swimming, rowing, etc.), differ
in the levels of these parameters. Whether practicing high effort sports such as: ”treadmill” and
”aquatic” differ in the levels of these parameters from those practicing ”team games”
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Re.1) Hypotheses:

H0 : The means of the analyzed parameters are the same
for athletes participating in specific sports,

H1 : at least one parameter has a different mean value
for the compared populations.

The result of Box’s test (p=0.6302) allows us to calculate Analyses of the MANOVA type.

The significanceof the coefficients:Wilks’ Lambda,Hotelling‐Lawley trace, andPillai‐Bartlett trace
allow us to argue that the study populations of athletes differ on these parameters. To determine
the differences we conduct a one‐dimensional ANOVA analysis.
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The results should be treated with caution. Although they indicate significant differences in all
comparedparameters, they yield p‐values bordering on statistical significance (forWBCp=0.0489,
for height p=0.0441, for weight p=0.0253). Additionally, when interpreting them, it is important
to remember that they do not take into account eithermutual correlation of parameters ormulti‐
ple testing. Accounting for multiple testing in this case would require applying one of the p‐value
adjustments described in the section Multiple comparisons.

Re.2) Hypotheses:

H0 : means of analyzed parameters for ”team sports”
are not different from the respective means of the athletes in the other two groups

H1 : at least one parameter has a different mean value
for the compared populations.
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To check whether the above hypotheses are true, we set an appropriate contrast in the analysis
window. As a contrast value we enter 2 for team sports, ‐1 for treadmill and sports defined as
aquatic.

As a result, the obtained significance of the coefficients: Wilks’ Lambda, Hotelling‐Lawley trace
and Pillai‐Bartlett trace (p=0.0059) allows us to argue that athletes practicing high intensity sports
differ in these parameters from those practicing team sports. In simultaneous intervals we do
not observe these differences, while on the basis of Bonferroni intervals we can state that the
difference concernsweight andWBC.WBC values are higher in the team sports group, andweight
is significantly lower in this group.
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19.1 The Mantel‐Haenszel method for several tables
The Mantel‐Haenszel method for 2 × 2 tables proposed by Mantel and Haenszel (1959)[109] then it
was extended by Mantel (1963)[110]. A wider review the development of these methods was carried
out i.a. by Newman (2001)[123].
This method can be used in analysis 2 × 2 tables, that occur in several (w >= 2) stratas constructed
by confounding variable. For the next stratas (s = 1, ..., w) the 2 × 2 contingency tables for observed
frequencies are created:

Observed frequencies Analysed phenomenon (illness)
s‐th strata

(
O

(s)
ij

)
occurs (case) not occurs (control) Total

Risk factor
exposed O

(s)
11 O

(s)
12 O

(s)
11 +O

(s)
12

unexposed O
(s)
21 O

(s)
22 O

(s)
21 +O

(s)
22

Total O
(s)
11 +O

(s)
21 O

(s)
12 +O

(s)
22 n(s) = O

(s)
11 +O

(s)
12 +O

(s)
21 +O

(s)
22

The settings window with the Mantel-Haenszel OR/RR can be opened in Statistics menu→Stratified
analysis→Mantel-Haenszel OR/RR.

19.1.1 The Mantel‐Haenszel Odds Ratio

If all tables (created by individual stratas) are homogeneous (the χ2 test of homogeneity for the OR
can check this condition), then, on the basis of these tables, the pooled odds ratio with the confidence
interval can be designated. Such odds ratio, is a weighted mean for an odds ratio designated for the
individual stratas. The usage of the weighted method, proposed by Mantel and Haenszel allows to inc‐
lude the contribution of the strata weights. Each strata has an influence on the pooled odds ratio (the
greater size of the strata, the greater weight and the greater influence on the pooled odds ratio).
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Weights for individual stratas are designated according to the following formula:

g(s) =
O

(s)
21 ·O(s)

12

n(s)
,

and theMantel‐Haenszel odds ratio:
ORMH =

R

S
,

where:

R =

w∑
s=1

O
(s)
11 ·O(s)

22

n(s)
,

S =
w∑

s=1

g(s).

The confidence interval for logORMH is designated on the basis of the standard error (RGB – Robins‐
Breslow‐Greenland[134][135]) calculated according to the following formula:

SEMH =

√
T

2R2
+

U + Y

2RS
+

W

2S2
,

where:

T =

w∑
s=1

T (s), T (s) =
O

(s)
11 ·O(s)

22 ·
(
O

(s)
11 +O

(s)
22

)
(
n(s)

)2 ,

U =
w∑

s=1

U (s), U (s) =
O

(s)
21 ·O(s)

12 ·
(
O

(s)
11 +O

(s)
22

)
(
n(s)

)2 ,

Y =
w∑

s=1

Y (s), Y (s) =
O

(s)
11 ·O(s)

22 ·
(
O

(s)
21 +O

(s)
12

)
(
n(s)

)2 ,

W =

w∑
s=1

W (s), W (s) =
O

(s)
21 ·O(s)

12 ·
(
O

(s)
21 +O

(s)
12

)
(
n(s)

)2 .

The Mantel‐Haenszel χ2 test for theORMH

The Mantel‐Haenszel Chi‐square test for the ORMH is used in the hypothesis verification about
the significance of designated odds ratio (ORMH ). It should be calculated for large frequencies,
i.e. when both conditions of the so‐called ”rule 5” are satisfied:

• min(O(s)
11 +O

(s)
12 , O

(s)
11 +O

(s)
21 )−

∑w
s=1E

(s)
11 ≥ 5 for all the stratas s = 1, 2, ..., w,

• max(0, O(s)
11 −O

(s)
22 ) ≥ 5 for all the stratas s = 1, 2, ..., w.

When there are zero values in the table, a continuity adjustment (increasing the counts by a value
of 0.5) is applied to both the observed counts and the expected counts.

Hypotheses:

H0 : ORMH = 1,
H1 : ORMH ̸= 1.
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The test statistic is defined by:

χ2
MH =

(∑w
s=1O

(s)
11 −

∑w
s=1E

(s)
11

)2
V

,

where:

E
(s)
11 =

(
O

(s)
11 +O

(s)
21

)(
O

(s)
11 +O

(s)
12

)
n(s)

are the expected frequencies in the first con‐
tingency table cell, for the individual stratas s = 1, 2, ..., w,

V =

w∑
s=1

V (s),

V (s) =

(
O

(s)
11 +O

(s)
12

)(
O

(s)
21 +O

(s)
22

)(
O

(s)
11 +O

(s)
21

)(
O

(s)
12 +O

(s)
22

)
(
n(s)

)2 (
n(s) − 1

) .

This statistic asymptotically (for large frequencies) has the χ2 distribution with 1 degree of fre‐
edom.

The p value, designated on the basis of the test statistic, is compared with the significance level
α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

The χ2 test of homogeneity for theOR

The Chi‐square test of homogeneity for the OR is used in the hypothesis verification that the
variable, creating stratas, is the modifying effect, i.e. it influences on the designated odds ratio in
the manner that, the odds ratios are significant different for individual stratas.

Hypotheses:

H0 : ORMH = OR(s), for all the stratas s = 1, 2, ..., w,
H1 : ORMH ̸= OR(s), for at least one strata.

The test statistic (Breslow‐Day (1980)[25], Tarone (1985)[26][157]) is defined by:

χ2 =

w∑
s=1

(
O

(s)
11 − E(s)

)2
V ar(s)

−

(∑w
s=1O

(s)
11 −

∑w
s=1E

(s)
)2

∑w
s=1 V ar(s)

where:
E(s) is solution to the quadratic equation:

E(s)
(
O

(s)
22 −O

(s)
11 + E(s)

)
(
O

(s)
11 +O

(s)
21 − E(s)

)(
O

(s)
11 +O

(s)
12 − E(s)

) = ORMH ,

V ar(s) =

(
1

E(s) +
1

O
(s)
22 −O

(s)
11 +E(s)

+ 1

O
(s)
11 +O

(s)
21 −E(s)

+ 1

O
(s)
11 +O

(s)
12 −E(s)

)−1

.

This statistic asymptotically (for large frequencies) has the χ2 distribution with the number of
degrees of freedom calculated using the formula: df = w − 1.

The p value, designated on the basis of the test statistic, is compared with the significance level
α:
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if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

EXAMPLE 19.1. (leptospirosis.pqs file)
The following table presents hypothetical poll results, conducted among inhabitants of a city and vil‐
lage (the village is treated as a risk factor) in West India. The poll aim was to detect risk factors of
leptospirosis[20]. The occurrence of leptospirosis antibodies is a indirect evidence about infection.

Observed frequencies leptospirosis antibodies
Oij occur not occur

place of residence
rural 60 140
urban 60 140

The odds of the occurrence of leptospirosis antibodies, among inhabitants of the city and the village,
is the same (OR=1). Let’s include gender in the analysis and check what odds will be then. The sample
has to be divided into 2 stratas, because of gender (they are marked in a file as a saved selection):

Observed frequencies leptospirosis antibodies
for men occur not occur

place of residence
rural 36 14
urban 50 50

Observed frequencies leptospirosis antibodies
for women occur not occur

place of residence
rural 24 126
urban 10 90

Gender is associated with both factors (the occurrence of leptospirosis anibodies and the residence in
West India). This is a significant factor. Its ignorance can lead to errors in results.
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The odds of the occurrence of leptospirosis antibodies is larger among village inhabitants, both among
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women (OR[95%CI]=2.57[1.24, 5.34]) and men (OR[95%CI]=1.71[0.78, 3.76]). The tables are homoge‐
neous (p=0.4589). Thus,we canuse the calculatedodds ratio,which ismutual for both tables (ORMH [95%CI]=2.13[1.24,
3.65]). Finally, the obtained result indicates that the odds of the occurrence of leptospirosis antibodies
is significantly greater among village inhabitants (p=0.0052).

19.1.2 The Mantel‐Haenszel Relative Risk

If all tables (created by individual stratas) are homogeneous (the χ2 test of homogeneity for the RR),
can check this condition), then, on the basis of these tables, the pooled relative risk with the confiden‐
ce interval can be designated. Such relative risk is a weighted mean for a relative risk designated for
the individual stratas. The usage of the weighted method, proposed by Mantel and Haenszel allows to
include the contribution of the strata weights. Each strata of the input has an influence on the pooled
relative risk construction (the greater size of the strata, the greater weight and the greater influence on
the pooled relative risk).

Weights for individual stratas are designated according to the following formula:

g(s) =
O

(s)
21

(
O

(s)
11 +O

(s)
12

)
n(s)

,

and theMantel‐Haenszel relative risk:
RRMH =

R

S
,

where:

R =
w∑

s=1

O
(s)
11

(
O

(s)
21 +O

(s)
22

)
n(s)

,

S =
w∑

s=1

g(s).

The confidence interval for logRRMH is designated on the basis of the standard error calculated ac‐
cording to the following formula:

SEMH =

√
V

RS
,

where:

V =
w∑

s=1

V (s),

V (s) =

(
O

(s)
11 +O

(s)
12

)(
O

(s)
21 +O

(s)
22

)(
O

(s)
11 +O

(s)
21

)
−
(
O

(s)
11 ∗O(s)

21 ∗ n(s)
)

(
n(s)

)2 .

The Manel‐Hanszel χ2 test for theRRMH

The Mantel‐Haenszel Chi‐square test for the RRMH is used in the hypothesis verification about
the significance of designated relative risk (RRMH ). It should be calculated for large frequencies,
in a contingency table.

Hypotheses:

H0 : RRMH = 1,
H1 : RRMH ̸= 1.
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The test statistic is defined by:

χ2
MH =

(∑w
s=1O

(s)
11 −

∑w
s=1E

(s)
11

)2
V

,

where:

E
(s)
11 =

(
O

(s)
11 +O

(s)
21

)(
O

(s)
11 +O

(s)
12

)
n(s) are the expected frequencies in the first contingency

table cell, for individual stratas s = 1, 2, ..., w.

This statistic asymptotically (for large frequencies) has the χ2 distribution with 1 degree of fre‐
edom.

The p value, designated on the basis of the test statistic, is compared with the significance level
α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

The χ2 test of homogeneity for theRR

The Chi‐square test of homogeneity for the RR is used in the hypothesis verification that the
variable creating stratas, is the modifying effect, i.e. it influences on the designated relative risk
in the manner that, the relative risks are significant different for individual stratas.

Hypotheses:

H0 : RRMH = RR(s), for all the stratas s = 1, 2, ..., w,
H1 : RRMH ̸= RR(s), for at least one strata.

The test statistic, using weighted least squares method, is defined by:

χ2 =

w∑
s=1

v(s)
(
ln(RR(s))− ln(RRMH)

)2
where:

v(s) =

(
O

(s)
12

O
(s)
11

(
O

(s)
11 +O

(s)
12

) +
O

(s)
22

O
(s)
21

(
O

(s)
21 +O

(s)
22

)
)−1

.

This statistic asymptotically (for large frequencies) has the χ2 distribution with the number of
degrees of freedom calculated using the formula: df = w − 1.

The p value, designated on the basis of the test statistic, is compared with the significance level
α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.
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Interval scale

Are
the data
normally

distributed?

tests for
linear

correlation
coefficient rp
and linear
regression
coefficient β

Y

N

Ordinal scale

tests for
monotonic
correlation
coefficients
rs or τ

Nominal scale

χ2 test and dedicated to them
C, ϕ, V contingency coefficients

or test forQ contingency coefficient

normality tests

The Correlation coefficients are one of the measures of descriptive statistics which represent the level
of correlation (dependence) between 2 or more features (variables). The choice of a particular coeffi‐
cient depends mainly on the scale, on which the measurements were done. Calculation of coefficients
is one of the first steps of the correlation analysis. Then the statistic significance of the gained coeffi‐
cients may be checked using adequate tests.

Note
Note, that the dependence between variables does not always show the cause‐and‐effect relationship.

Copyright ©2010‐2023 PQStat Software – All rights reserved 299



20 CORRELATION

20.1 PARAMETRIC TESTS

20.1.1 THE LINEAR CORRELATION COEFFICIENTS

The Pearson product‐moment correlation coefficient rp called also the Pearson’s linear correlation co‐
efficient (Pearson (1896,1900)) is used to decribe the strength of linear relations between 2 features. It
may be calculated on an interval scale only if the distribution of the analyed features is a normal one.

rp =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
,

where:
xi, yi ‐ the following values of the featureX and Y ,
x, y ‐ means values of features:X and Y ,
n ‐ sample size.

Note
Rp – the Pearson product‐moment correlation coefficient in a population;
rp – the Pearson product‐moment correlation coefficient in a sample.

The value of rp ∈< −1; 1 >, and it should be interpreted the following way:

• rp ≈ 1 means a strong positive linear correlation – measurement points are closed to a straight
line and when the independent variable increases, the dependent variable increases too;

• rp ≈ −1means a strong negative linear correlation –measurement points are closed to a straight
line, but when the independent variable increases, the dependent variable decreases;

• if the correlation coefficient is equal to the value or very closed to zero, there is no linear de‐
pendence between the analysed features (but there might exist another relation ‐ a not linear
one).

Wykres 20.1. Graphic interpretation of rp.

* **

*
*

*
*

*
y

x

rp ≈ 0

*
*

*

*
*

y

x

rp ≈ 1

*
* *

**

y

x

rp ≈ −1

If one out of the 2 analysed features is constant (it does not matter if the other feature is changed), the
features are not dependent from each other. In that situation rp can not be calculated.

Note
You are not allowed to calculate the correlation coefficient if: there are outliers in a sample (they may
make that the value and the sign of the coefficient would be completely wrong), if the sample is clearly
heterogeneous, or if the analysed relation takes obviously the other shape than linear.

The coefficient of determination: r2p – reflects the percentage of a dependent variable a variability
which is explained by variability of an independent variable.
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A created model shows a linear relationship:

y = βx+ α.

β and α coefficients of linear regression equation can be calculated using formulas:

β =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2
, α = y − βx.

20.1.2 The Pearson correlation coefficient significance

The test of significance for Pearson product‐moment correlation coefficient is used to verify the hypo‐
thesis determining the lack of linear correlation between an analysed features of a population and it is
based on the Pearson’s linear correlation coefficient calculated for the sample. The closer to 0 the value
of rp is, the weaker dependence joins the analysed features.

Basic assumptions:

– measurement on the interval scale,

– normality of distribution of residuals or an analysed features in a population.

Hypotheses:

H0 : Rp = 0,
H1 : Rp ̸= 0.

The test statistic is defined by:
t =

rp
SE

,

where SE =

√
1− r2p
n− 2

.

The value of the test statistic can not be calculated when rp = 1 or rp = −1 or when n < 3.

The test statistic has the t‐Student distribution with n− 2 degrees of freedom.

The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

20.1.3 The slope coefficient significance

The test of significance for the coefficient of linear regression equation

This test is used to verify the hypothesis determining the lack of a linear dependence between an ana‐
lysed features and is based on the slope coefficient (also called an effect), calculated for the sample.
The closer to 0 the value of β is, the weaker dependence presents the fitted line.

Basic assumptions:

– measurement on the interval scale,

– normality of distribution of residuals or an analysed features in a population.

Hypotheses:
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H0 : β = 0,
H1 : β ̸= 0.

The test statistic is defined by:
t =

β

SE

where:
SE =

syx

sdx
√
n− 1

,

syx = sdy

√
n−1
n−2(1− r2),

sdx, sdy – standard deviation of the value of features:X and Y .

The value of the test statistic can not be calculated when rp = 1 or rp = −1 or when n < 3.

The test statistic has the t‐Student distribution with n− 2 degrees of freedom.

The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

Prediction is used to predict the value of a one variable (mainly a dependent variable y0) on the basis
of a value of an another variable (mainly an independent variable x0). The accuracies of a calculated
value are defined by prediction intervals calculated for it.

– Interpolation is used to predict the value of a variable, which occurs inside the area for which
the regression model was done. Interpolation is mainly a safe procedure ‐ it is assumed only the
continuity of the function of analysed variables.

– Extrapolation is used to predict the value of variable, which occurs outside the area for which
the regression model was done. As opposed to interpolation, extrapolation is often risky and is
performed only not far away from the area, where the regression model was created. Similarly
to the interpolation, it is assumed the continuity of the function of analysed variables.

Analysis of model residuals ‐ explanation in the Multiple Linear Regression module.

The settingswindowwith thePearson’s linear correlation canbeopened inStatisticsmenu→Parametric
tests→linear correlation (r-Pearson) or in Wizard.
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EXAMPLE 20.1. (age‐height.pqs file)
Among some students of a ballet school, the dependence between age and height was analysed. The
sample consists of 16 children and the following results of these features (related to the children) were
written down:
(age, height): (5, 128) (5, 129) (5, 135) (6, 132) (6, 137) (6, 140) (7, 148) (7, 150) (8, 135) (8, 142) (8, 151)
(9, 138) (9, 153) (10, 159) (10, 160) (10, 162).
Hypotheses:

H0 : there is no linear dependence between age and height
for the population of children who attend to the analysed school,

H1 : there is a linear dependence between age and height
for the population of children who attend to the analysed school.
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Comparing the p value < 0.0001with the significance levelα = 0.05, we draw the conclusion, that there
is a linear dependence between age and height in the population of children attening to the analysed
school. This dependence is directly proportional, it means that the children grow up as they are getting
older.
The Pearson product‐moment correlation coefficient, so the strength of the linear relation between age
and height counts to rp=0.83. Coefficient of determination r2p = 0.69means that about 69% variability
of height is explained by the changing of age.
From the regression equation:

height = 5.09 · age+ 105.83

it is possible to calculate the predicted value for a child, for example: in the age of 6. The predicted
height of such child is 136.37cm.

20.1.4 Comparison of correlation coefficients

The test for checking the equality of the Pearson product‐moment correlation coefficients, which co‐
me from 2 independent populations

This test is used to verify the hypothesis determining the equality of 2 Pearson’s linear correlation co‐
efficients (Rp1 ,Rp2).

Basic assumptions:

• rp1 and rp2 come from 2 samples which are chosen randomly from independent populations,

• rp1 and rp2 describe the strength of dependence of the same features:X and Y ,

• sizes of both samples (n1 and n2) are known.

Hypotheses:

H0 : Rp1 = Rp2 ,
H1 : Rp1 ̸= Rp2 .
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The test statistic is defined by:
t =

zrp1 − zrp2√
1

n1−3 + 1
n2−3

,

where:
zrp1 =

1

2
ln
(
1 + rp1
1− rp1

)
,

zrp2 =
1

2
ln
(
1 + rp2
1− rp2

)
.

The test statistic has the t‐Student distribution with n1 + n2 − 4 degrees of freedom.

The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

20.1.5 Comparison of the slope of regression lines

The test for checking the equality of the coefficients of linear regression equation, which come from
2 independent populations

This test is used to verify the hypothesis determining the equality of 2 coefficients of the linear regres‐
sion equation β1 and β2 in analysed populations.

Basic assumptions:

• β1 and β2 come from 2 samples which are chosen randomly from independent populations,

• β1 and β2 describe the strength of dependence of the same features:X and Y ,

• both sample sizes (n1 and n2) are known,

• standard deviations for the values of both features in both samples (sdx1 , sdy1 and sdx2 , sdy2 )
are known,

• the Pearson product‐moment correlation coefficients of both samples (rp1 and rp2 ) are known.

Hypotheses:

H0 : β1 = β2,
H1 : β1 ̸= β2.

The test statistic is defined by:

t =
β1 − β2√

s2yx1
sd2x1 (n1−1)

+
s2yx2

sd2x1 (n2−1)

,

where:

syx1 = sdy1

√
n1 − 1

n1 − 2
(1− r2p1),

syx2 = sdy2

√
n2 − 1

n2 − 2
(1− r2p2).

The test statistic has the t‐Student distribution with n1 + n2 − 4 degrees of freedom.

The p value, designated on the basis of the test statistic, is compared with the significance level α:
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if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

The settings window with the comparison of correlation coefficients can be opened in Statistics menu
→ Parametric tests → Comparison of correlation coefficients.
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20.2 NON‐PARAMETRIC TESTS

20.2.1 THE MONOTONIC CORRELATION COEFFICIENTS

The monotonic correlation may be described as monotonically increasing or monotonically decreasing.
The relation between 2 features is presented by the monotonic increasing if the increasing of the one
feature accompanies with the increasing of the other one. The relation between 2 features is presented
by the monotonic decreasing if the increasing of the one feature accompanies with the decreasing of
the other one.

The Spearman’s rank‐order correlation coefficient rs is used to describe the strength of monotonic
relations between 2 features:X and Y . It may be calculated on an ordinal scale or an interval one. The
value of the Spearman’s rank correlation coefficient should be calculated using the following formula:

rs = 1−
6
∑n

i=1 d
2
i

n(n2 − 1)
,

where:
di = Rxi −Ryi – difference of ranks for the featureX and Y ,
n number of di.

This formula is modified when there are ties:

rs =
ΣX +ΣY −

∑n
i=1 d

2
i

2
√
ΣXΣY

,

where:

ΣX = n3−n−TX
12 , ΣY = n3−n−TY

12 ,
TX =

∑s
i=1(t

3
i(X)

− ti(X)
), TY =

∑s
i=1(t

3
i(Y )

− ti(Y )
),

t – number of cases included in tie.

This correction is used, when ties occur. If there are no ties, the correction is not calculated, because
the correction is reduced to the formula describing the above equation.

Note
Rs – the Spearman’s rank correlation coefficient in a population;
rs – the Spearman’s rank correlation coefficient in a sample.

The value of rs ∈< −1; 1 >, and it should be interpreted the following way:

• rs ≈ 1 means a strong positive monotonic correlation (increasing) – when the independent va‐
riable increases, the dependent variable increases too;

• rs ≈ −1 means a strong negative monotonic correlation (decreasing) – when the independent
variable increases, the dependent variable decreases;

• if the Spearman’s correlation coefficient is of the value equal or very close to zero, there is no
monotonic dependence between the analysed features (but there might exist another relation ‐
a non monotonic one, for example a sinusoidal relation).

The Kendall’s τ̃ correlation coefficient (Kendall (1938)[89]) is used to describe the strength of mono‐
tonic relations between features . It may be calculated on an ordinal scale or interval one. The value of
the Kendall’s τ̃ correlation coefficient should be calculated using the following formula:

τ̃ =
2(nC − nD)√

n(n− 1)− TX

√
n(n− 1)− TY

,
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where:

nC – number of pairs of observations, for which the values of the ranks for theX feature
as well as Y feature are changed in the same direction (the number of agreed pairs),

nD – number of pairs of observations, for which the values of the ranks for theX feature
are changed in the different direction than for theY feature (the number of disagreed
pairs),

TX =
∑s

i=1(t
2
i(X)

− ti(X)
), TY =

∑s
i=1(t

2
i(Y )

− ti(Y )
),

t – number of cases included in a tie.

The formula for the τ̃ correlation coefficient includes the correction for ties. This correction is used,
when ties occur (if there are no ties, the correction is not calculated, because of TX = 0 i TY = 0) .

Note
τ – the Kendall’s correlation coefficient in a population;
τ̃ – the Kendall’s correlation coefficient in a sample.

The value of τ̃ ∈< −1; 1 >, and it should be interpreted the following way:

• τ̃ ≈ 1means a strong agreement of the sequence of ranks (the increasingmonotonic correlation)
– when the independent variable increases, the dependent variable increases too;

• τ̃ ≈ −1 means a strong disagreement of the sequence of ranks (the decreasing monotonic cor‐
relation) – when the independent variable increases, the dependent variable decreases;

• if the Kendall’s τ̃ correlation coefficient is of the value equal or very close to zero, there is no
monotonic dependence between analysed features (but there might exist another relation ‐ a
non monotonic one, for example a sinusoidal relation).

The Spearman’s rs versus the Kendall’s τ̃

– for an interval scale with a normality of the distribution, the rs gives the results which are close
to rp, but τ̃ may be totally different from rp,

– the τ̃ value is less or equal to rp value,

– the τ̃ is an unbiased estimator of the population parameter τ , while the rs is a biased estimator
of the population parameterRs.

20.2.2 Significance Test for Spearman

The test of significance for the Spearman’s rank‐order correlation coefficient is used to verify the hypo‐
thesis determining the lack of monotonic correlation between analysed features of the population and
it is based on the Spearman’s rank‐order correlation coefficient calculated for the sample. The closer to
0 the value of rs is, the weaker dependence joins the analysed features.

Basic assumptions:

– measurement on an ordinal scale or on an interval scale.

Hypotheses:

H0 : Rs = 0,
H1 : Rs ̸= 0.
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The test statistic is defined by:
t =

rs
SE

,

where SE =

√
1− r2s
n− 2

.

The value of the test statistic can not be calculated when rs = 1 lub rs = −1 or when n < 3.

The test statistic has the t‐Student distribution with n− 2 degrees of freedom.

The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

The settings window with the Spearman’s monotonic correlation can be opened in Statistics menu→
NonParametric tests→monotonic correlation (r-Spearman) or in Wizard.

EXAMPLE 20.2. (LDL weeks.pqs file)

The effectiveness of a new therapy designed to lower cholesterol levels in the LDL fraction was studied.
88 people at different stages of the treatment were examined. We will test whether LDL cholesterol
levels decrease and stabilize with the duration of the treatment (time in weeks).

Hypotheses:

H0 : In the population, there is no monotonic relationship between treatment time and LDL levels,
H1 : In the population, there is a monotonic relationship between treatment time and LDL levels.
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Comparing p<0.0001 with a significance level α = 0.05 we find that there is a statistically significant
monotonic relationship between treatment time and LDL levels. This relationship is initially decreasing
and begins to stabilize after 150weeks. The Spearman’smonotonic correlation coefficient and therefore
the strength of the monotonic relationship for this relationship is quite high at rs=‐0.78. The graph was
plotted by curve fitting through local LOWESS linear smoothing techniques.

20.2.3 Significance Test for Kendall’s tau

The test of significance for the Kendall’s τ̃ correlation coefficient is used to verify the hypothesis de‐
termining the lack of monotonic correlation between analysed features of population. It is based on
the Kendall’s tau correlation coefficient calculated for the sample. The closer to 0 the value of τ̃ is, the
weaker dependence joins the analysed features.

Basic assumptions:
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– measurement on an ordinal scale or on an interval scale.

Hypotheses:

H0 : τ = 0,
H1 : τ ̸= 0.

The test statistic is defined by:

Z =
3τ̃
√

n(n− 1)√
2(2n+ 5)

.

The test statistic asymptotically (for a large sample size) has the normal distribution.

The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

The settings window with the Kendall’s monotonic correlation can be opened in Statistics menu →
NonParametric tests→monotonic correlation (tau-Kendall) or in Wizard.

EXAMPLE (20.2) c.d. (LDL weeks.pqs file)
Hypotheses:

H0 : In the population, there is no monotonic relationship between treatment time and LDL levels,
H1 : In the population, there is a monotonic relationship between treatment time and LDL levels.
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Comparing p<0.0001 with a significance level α = 0.05 we find that there is a statistically significant
monotonic relationship between treatment time and LDL levels. This relationship is initially decreasing
and begins to stabilize after 150 weeks. The Kendall’s monotonic correlation coefficient, and therefore
the strength of the monotonic relationship for this relationship is quite high at τ̃=‐0.60. The graph was
plotted by curve fitting through local LOWESS linear smoothing techniques.

20.2.4 CONTINGENCY TABLES COEFFICIENTS AND THEIR STATISTICAL SIGNIFICANCE

The contingency coefficients are calculated for the raw data or the data gathered in a contingency table
(look at the table (10.1)).

The settings window with the measures of correlation can be opened in Statistics menu→ NonPara-
metric tests → Ch-square, Fisher, OR/RR option Measures of dependence... or in Wizard.
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The Yule’sQ contingency coefficient

The Yule’sQ contingency coefficient (Yule, 1900[176]) is a measure of correlation, which can be calcu‐
lated for 2× 2 contingency tables.

Q =
O11O22 −O12O21

O11O22 +O12O21
,

where:
O11, O12, O21, O22 ‐ observed frequencies in a contingency table.

The Q coefficient value is included in a range of < −1; 1 >. The closer to 0 the value of the Q is, the
weaker dependence joins the analysed features, and the closer to −1 or +1, the stronger dependence
joins the analysed features. There is one disadvantage of this coefficient. It is notmuch resistant to small
observed frequencies (if one of them is 0, the coefficient might wrongly indicate the total dependence
of features).

The statistic significance of the Yule’sQ coefficient is defined by the Z test.
Hypotheses:

H0 : Q = 0,
H1 : Q ̸= 0.

The test statistic is defined by:

Z =
Q√

1
4(1−Q2)2( 1

O11
+ 1

O12
+ 1

O21
+ 1

O22
)
.

The test statistic asymptotically (for a large sample size) has the normal distribution.
The p value, designated on the basis of the test statistic, is compared with the significance level α:
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if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

The ϕ contingency coefficient

The Phi contingency coefficient is ameasure of correlation,which can be calculated for 2×2 contingency
tables.

ϕ =

√
χ2

n
,

where:
χ2 – value of the χ2 test statistic,
n – total frequency in a contingency table.

The ϕ coefficient value is included in a range of < 0; 1 >. The closer to 0 the value of ϕ is, the weaker
dependence joins the analysed features, and the closer to 1, the stronger dependence joins the analy‐
sed features.

The ϕ contingency coefficient is considered as statistically significant, if the p‐value calculated on the
basis of the χ2 test (designated for this table) is equal to or less than the significance level α.

The Cramer’s V contingency coefficient

The Cramer’s V contingency coefficient (Cramer, 1946[48]), is an extension of the ϕ coefficient on r× c
contingency tables.

V =

√
χ2

n(w′ − 1)
,

where:
χ2 – value of the χ2 test statistic,
n – total frequency in a contingency table,
w′ – the smaller the value out of r and c.

The V coefficient value is included in a range of < 0; 1 >. The closer to 0 the value of V is, the we‐
aker dependence joins the analysed features, and the closer to 1, the stronger dependence joins the
analysed features. The V coefficient value depends also on the table size, so you should not use this
coefficient to compare different sizes of contingency tables.

The V contingency coefficient is considered as statistically significant, if the p‐value calculated on the
basis of the χ2 test (designated for this table) is equal to or less than the significance level α.

W ‐Cohen contingency coefficient

TheW ‐Cohen contingency coefficient (Cohen (1988)[45]), is a modification of the V ‐Cramer coefficient
and is computable for r × c tables.

W =

√
χ2

n(w′ − 1)

√
w′ − 1,

where:
χ2 – value of the χ2 test statistic,
n – total frequency in a contingency table,
w′ – the smaller the value out of r and c.
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TheW coefficient value is included in a range of < 0;maxW >, where maxW =
√
w′ − 1 (for tables

where at least one variable contains only two categories, the value of the coefficientW is in the range
< 0; 1 >). The closer to 0 the value of W is, the weaker dependence joins the analysed features, and
the closer to maxW , the stronger dependence joins the analysed features. The W coefficient value
depends also on the table size, so you should not use this coefficient to compare different sizes of con‐
tingency tables.

TheW contingency coefficient is considered as statistically significant, if the p‐value calculated on the
basis of the χ2 test (designated for this table) is equal to or less than the significance level α.

The Pearson’s C contingency coefficient

The Pearson’s C contingency coefficient is a measure of correlation, which can be calculated for r × c
contingency tables.

C =

√
χ2

χ2 + n
,

where:
χ2 – value of the χ2 test statistic,
n – total frequency in a contingency table.

The C coefficient value is included in a range of < 0; 1). The closer to 0 the value of C is, the weaker
dependence joins the analysed features, and the farther from 0, the stronger dependence joins the
analysed features. The C coefficient value depends also on the table size (the bigger table, the closer
to 1 C value can be), that is why it should be calculated the top limit, which the C coefficient may gain
– for the particular table size:

Cmax =

√
w′ − 1

w
,

where:
w′ – the smaller value out of r and c.

An uncomfortable consequence of dependence of C value on a table size is the lack of possibility of
comparison the C coefficient value calculated for the various sizes of contingency tables. A little bit
better measure is a contingency coefficient adjusted for the table size (Cadj):

Cadj =
C

Cmax
.

The C contingency coefficient is considered as statistically significant, if the p‐value calculated on the
basis of the χ2 test (designated for this table) is equal to or less than significance level α.

EXAMPLE 20.3. (sex‐exam.pqs file)
There is a sample of 170 persons (n = 170), who have 2 features analysed (X=sex, Y =passing the
exam). Eachof these features occurs in 2 categories (X1=f,X2=m,Y1=yes,Y2=no). Basing on the sample,
we would like to get to know, if there is any dependence between sex and passing the exam in an
analysed population. The data distribution is presented in a contingency table:

Observed frequencies passing the exam
Oij yes no total

sex
f 50 40 90
m 20 60 80

total 70 100 170
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The test statistic value is χ2 = 16.33 and the p value calculated for it: p < 0.0001. The result indicates
that there is a statistically significant dependence between sex and passing the exam in the analysed
population.

Coefficient values, which are based on the χ2 test, so the strength of the correlation between analysed
features are:

Cadj‐Pearson = 0.42.
V ‐Cramer = ϕ =W ‐Cohen = 0.31

Copyright ©2010‐2023 PQStat Software – All rights reserved 317



20 CORRELATION

TheQ‐Yule = 0.58, and the p value of theZ test (similarly toχ2 test) indicates the statistically significant
dependence between the analysed features.
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21.1 PARAMETRIC TESTS

21.1.1 The Intraclass Correlation Coefficient and a test to examine its significance

The intraclass correlation coefficient is used when the measurement of variables is done by a few ”ra‐
ters” (k ≥ 2). It measures the strength of interrater reliability − the degree of its assessment concor‐
dance.

Since it can be determined in several different situations, there are several variations depending on the
model and the type of concordance. Depending on the variability present in the data, we can distinguish
between 2 main research models and 2 types of concordance.

Model 1 For each of the n randomly selected judged objects, a set of k judges is randomly selected
from the population of judges. Whereby for each object a different set of k judges can be drawn.

The ICC coefficient is then determined by the randommodel ANOVA for independent groups. The
question of the reliability of a single judge’s ratings is answered by ICC(1,1) given by the formula:

ICC(1, 1) =
MSWG −MSBG

MSWG + (k − 1)MSBG
.

To estimate the reliability of scores that are the average of the judges’ ratings (for k judges),
determine ICC(1,k) given by the formula:

ICC(1, k) =
MSWG −MSBG

MSWG
,

where:
MSWG – mean of squares within groups,
MSBG – mean of squares between objects.

Model 2 A set of k judges is randomly selected from a population of judges and each judge evaluates
all n random objects. The ICC coefficient is then determined in a random model ANOVA for de‐
pendent groups.

Depending on the type of concordance we are looking for, we can estimate: absolute agreement,
i.e., if the judges agree absolutely, they give exactly the same ratings, e.g., perfectly concordant
will be such ratings given by a pair of judges (2,2), (5,5), (8,8); or consistency, i.e., the judges may
use different ranges of values but beyond this shift there should be no differences to keep the
verdict consistent, e.g., perfectly consistent will be such ratings given by a pair of judges (2,5),
(5,8), (8,11).

Absolute agreement
The question about the reliability of a single judge’s ratings is answered by ICC(2,1) given by
the formula:

ICC(2, 1) =
MSBS −MSres

MSBS + (k − 1)MSres +
k
n(MSBC −MSres)

.

To estimate the reliability of scores that are the average of the judges’ ratings (for k judges),
determine ICC(2,k) given by the formula:

ICC(2, k) =
MSBS −MSres

MSBS + (MSBC −MSres)/n
,
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where:
MSBC – the mean of squares between judges,
MSBS – the mean of squares between objects,
MSres – mean of squares for the residuals.

Consistency
The question about the reliability of a single judge’s ratings is answered by ICC(2,1) given by
the formula:

ICC(2, 1) =
MSBS −MSres

MSBS + (k − 1)MSres
,

To estimate the reliability of scores that are the average of the judges’ ratings (for k judges),
determine ICC(2,k) given by the formula:

ICC(2, k) =
MSBS −MSres

MSBS
,

where:
MSBS – the mean of squares between objects,
MSres – mean of squares for the residuals.

Note
Sometimes, there is a need to considermodel 3 [149], i.e., a set of k judges is selected and each
judge evaluates all n random objects. The concordance score applies only to these particular k
judges. The ICC coefficient is then determined in a mixed model (since the randomness only af‐
fects the objects and not the judges). Since we are ignoring the variability concerning the judges,
we are examining consistency (rather than absolute agreement) and the coefficients from the se‐
cond model may apply: ICC(2,1) and ICC (2,k), since they are the same as the coefficients ICC(3,1)
and ICC (3,k) desired in this case under the assumption of no interaction between objects and
judges.

Note

We interpret the value ICC ∈< −1; 1 > as follows:

• ICC ≈ 1 it is an strong concordance of objects assessment made by judgess; it is especially
reflected in a high‐variance between objects (a significant means difference between n objects)
and a low‐variance between judges assessments (a small means difference of assessments desi‐
gnated by k judges);

• ICC ≈ −1 a negative intraclass coefficient is treated in the same ways as rICC ≈ 0;

• ICC ≈ 0 denotes a lack of concordance in the judges’ evaluations of individual objects, as re‐
flected by low variance between objects (a small difference in means between n objects) and
high variance between judges’ evaluations (a significant difference in mean scores determined
for k judges).

F‐test for testing the significance of intraclass correlation coefficient

Basic assumptions:

– measurement on an interval scale,

– the normal distribution for all variables which are the differences of measurement pairs (or the
normal distribution for an analysed variable in each measurement),

– for model 1 ‐ independent model, for model 2 / 3 ‐ dependent model.
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Hypotheses:

H0 : ICC = 0
H1 : ICC ̸= 0 (ICC = 1)

The test statistic has the form:

F =
MSBS

MSres
− in the dependent model,

or
F =

MSWG

MSBG
− in the independent model.

This statistic has the F Snedecor distribution with the number of degrees of freedom defined in the
model.

The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

The settings window with the ICC – Intraclass Correlation Coefficient can be opened in Statistics
menu→Parametric tests→ICC – Intraclass Correlation Coefficient or in Wizard.

EXAMPLE 21.1. (sound intensity.pqs file)
In order to effectively care for the hearing of workers in the workplace, it is first necessary to reliably
estimate the sound intensity in the various areas where people are present. One company decided to
conduct an experiment before choosing a sound intensity meter (sonograph). Measurements of sound
intensity were made at 42 randomly selected measurement points in the plant using 3 drawn analog
sonographs and 3 randomly selected digital sonographs. A part of collectedmeasurements is presented
in the table below.
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To find out which type of instrument (analog or digital) will better accomplish the task at hand, the ICC
in model 2 should be determined by examining the absolute agreement. The type of meter with the
higher ICC will have more reliable measurements and will therefore be used in the future.

The analysis performed for the analog meters shows significant consistency of the measurements
(p < 0.0001). The reliability of the measurement made by the analog meter is ICC(2, 1) = 0.45,
while the reliability of themeasurement that is the average of themeasurements made by the 3 analog
meters is slightly higher and is ICC(2, k) = 0.71. However, the lower limit of the 95 percent confidence
interval for these coefficients is disturbingly low.

A similar analysis performed for digital meters produced better results. The model is again statistical‐
ly significant, but the ICC coefficients and their confidence intervals are much higher than for analog
meters, so the absolute agreement obtained is higher ICC(2, 1) = 0.73, ICC(2, k) = 0.89.
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Therefore, eventually digital meters will be used in the workplace.

The agreement of the results obtained for the digital meters is shown in a dot plot, where each measu‐
rement point is described by the sound intensity value obtained for each meter.

By presenting a graph for the previously sorted data according to the average value of the sound in‐
tensity, one can check whether the degree of agreement increases or decreases as the sound intensity
increases. In the case of our data, a slightly higher correspondence (closeness of positions of points on
the graph) is observed at high sound intensities.
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Similarly, the consistency of the results obtained can be observed in the Blanda‐Altmana graphs[8][22]
constructed separately for each pair of meters. The graph for Meter I and Meter II is shown below.

Here, too, we observe higher agreement (points are concentrated near the horizontal axis y=0) for hi‐
gher sound intensity values.

Note
If the researcher was not concerned with estimating the actual sound level at the worksite, but wanted
to identify where the sound level was higher than at other sites or to see if the sound level varied over
time, then Model 2, which tests consistency, would be a sufficient model.

21.2 NON‐PARAMETRIC TESTS

21.2.1 The Kendall’s concordance coefficient and a test to examine its significance

TheKendall’s W̃ coefficient of concordance is described in theworks of Kendall, Babington‐Smith (1939)[90]
and Wallis (1939)[164]. It is used when the result comes from different sources (from different raters)
and concerns a few (k ≥ 2) objects. However, the assessment concordance is necessary. Is often used
in measuring the interrater reliability strength – the degree of (raters) assessment concordance.

The Kendall’s coefficient of concordance is calculated on an ordinal scale or a interval scale. Its value is
calculated according to the following formula:

W̃ =
12U − 3n2k(k + 1)2

n2k(k2 − 1)− nC
,

where:
n – number of different assessments sets (the number of raters),
k – number of ranked objects,

U =
k∑

j=1

(
n∑

i=1

Rij

)2

,

Rij – ranks ascribed to the following objects (j = 1, 2, ...k), independently for each rater
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(i = 1, 2, ...n),
C =

∑
(t3 − t) – a correction for ties,

t – number of cases incorporated into tie.

The coefficient’s formula includes C – the correction for ties. This correction is used, when ties occur
(if there are no ties, the correction is not calculated, because of C = 0).

Note
W – the Kendall’s coefficient in a population;
W̃ – the Kendall’s coefficient in a sample.

The value ofW ∈< 0; 1 > and it should be interpreted in the following way:

• W̃ ≈ 1means a strong concordance in raters assessments;

• W̃ ≈ 0means a lack of concordance in raters assessments.

The Kendall’s W̃ coefficient of concordance vs. the Spearman rs coefficient:

When the values of the Spearman rs correlation coefficient (for all possible pairs) are calculated,
the average rs coefficient – marked by r̄s is a linear function of W̃ coefficient:

r̄s =
nW̃ − 1

n− 1

The Kendall’s W̃ coefficient of concordance vs. the Friedman ANOVA:

The Kendall’s W̃ coefficient of concordance and the Friedman ANOVA are based on the same
mathematical model. As a result, the value of the chi‐square test statistic for the Kendall’s coef‐
ficient of concordance and the value of the chi‐square test statistic for the Friedman ANOVA are
the same.

The chi‐square test of significance for the Kendall’s coefficient of concordance

Basic assumptions:

– measurement on an ordinal scale or on an interval scale.

Hypotheses:

H0 : W = 0
H1 : W ̸= 0

The test statistic is defined by:
χ2 = n(k − 1)W̃

This statistic asymptotically (for large sample sizes) has the χ2 distribution with the degrees of freedom
calculated according to the following formula: df = k − 1.

The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

The settings window with the test of the Kendall’s W significance can be opened in Statistics menu
→NonParametric tests→Kendall’s W or in Wizard.
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EXAMPLE 21.2. (judges.pqs file)
In the 6.0 system, dancing pairs grades are assessed by 9 judges. The judges point for example an artistic
expression. They asses dancing pairs without comparing each of them and without placing them in the
particular ”podium place” (they create a ranking). Let’s check if the judges assessments are concordant.

Judges Couple A Couple B Couple C Couple D Couple E Couple F
S1 3 6 2 5 4 1
S2 4 6 1 5 3 2
S3 4 6 2 5 3 1
S4 2 6 3 5 4 1
S5 2 6 1 5 4 3
S6 3 5 1 6 4 2
S7 5 4 1 6 3 2
S8 3 6 2 5 4 1
S9 2 6 3 5 4 1

Hypotheses:

H0 : a lack of concordance between 9 judges assessments,
in the population represented by the sample,

H1 : the 9 judges assessments in the population represented
by the sample are concordant.
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Comparing the p < 0.0001 with the significance level α = 0.05, we have stated that the judges asses‐
sments are statistically concordant. The concordance strength is high: W̃ = 0.83, similarly the average
Spearman’s rank‐order correlation coefficient: r̄s = 0.81. This result can be presented in the graph,
where the X‐axis represents the successive judges. Then the more intersection of the lines we can see
(the lines should be parallel to the X axis, if the concordance is perfect), the less there is the concordance
of rateres evaluations.

21.2.2 The Cohen’s Kappa coefficient and the test examining its significance

The Cohen’s Kappa coefficient (Cohen J. (1960)[43]) defines the agreement level of two‐times me‐
asurements of the same variable in different conditions. Measurement of the same variable can be
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performed by 2 different observers (reproducibility) or by a one observer twice (recurrence). The κ̂ co‐
efficient is calculated for categorial dependent variables and its value is included in a range from ‐1 to
1. A 1 value means a full agreement, 0 value means agreement on the same level which would occur
for data spread in a contingency table randomly. The level between 0 and ‐1 is practically not used. The
negative κ̂ value means an agreement on the level which is lower than agreement which occurred for
the randomly spread data in a contingency table. The κ̂ coefficient can be calculated on the basis of raw
data or a c× c contingency table.

Unweighted Kappa (i.e., Cohen’s Kappa) or weighted Kappa can be determined as needed. The assigned
weights (wij) refer to individual cells of the contingency table, on the diagonal they are 1 and off the
diagonal they belong to the range< 0; 1).

Unweighted Kappa
It is calculated for data, the categories of which cannot be ordered, e.g. data comes from patients,
who are divided according to the type of disease which was diagnosed, and these diseases can‐
not be ordered, e.g. pneumonia (1), bronchitis (2) and other (3). In such a situation, one can
check the concordance of the diagnoses given by the two doctors by using unweighted Kappa,
or Cohen’s Kappa. Discordance of pairs (1), (3) and (1), (2) will be treated equivalently, so the
weights off the diagonal of the weight matrix will be zeroed.

Weighted Kappa
In situations where data categories can be sorted, e.g., data comes from patients who are divi‐
ded by the lesion grade into: no lesion (1), benign lesion (2), suspected cancer (3), cancer (4),
one can build the concordance of the ratings given by the two radiologists taking into account
the possibility of sorting. The ratings of (1), (4) than (1), (2) may then be considered as more
discordant pairs of ratings. For this to be the case, so that the order of the categories affects the
compatibility score, the weighted Kappa should be determined.

The assigned weights can be in linear or quadratic form.

• Linear weights (Cicchetti, 1971[36]) – calculated according to the formula:

wij = 1− |i− j|
c− 1

.

The greater the distance from the diagonal of the matrix the smaller the weight, with the
weights decreasing proportionally. Example weights for matrices of size 5x5 are shown in
the table:

1 0.75 0.5 0.25 0
0.75 1 0.75 0.5 0.25
0.5 0.75 1 0.75 0.5
0.25 0.5 0.75 1 0.75
0 0.25 0.5 0.75 1

• Square weights (Cohen, 1968[44]) – calculated according to the formula:

wij = 1− (i− j)2

(c− 1)2
.

The greater the distance from the diagonal of the matrix, the smaller the weight, with we‐
ights decreasing more slowly at closer distances from the diagonal and more rapidly at far‐
ther distances. Example weights for matrices of size 5x5 are shown in the table:
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1 0.9375 0.75 0.4375 0
0.9375 1 0.9375 0.75 0.4375
0.75 0.9375 1 0.9375 0.75

0.4375 0.75 0.9375 1 0.9375
0 0.4375 0.75 0.9375 1

Quadratic scales are of greater interest because of the practical interpretation of the Kappa
coefficient, which in this case is the same as the intraclass correlation coefficient [60].

To determine the Kappa coefficient compliance, the data are presented in the form of a table of obse‐
rved countsOij (15.3), and this table is transformed into a probability contingency table pij = Oij/n.

The Kappa coefficient (κ̂) is expressed by the formula:

κ̂ =
Po − Pe

1− Pe
,

where:
Po =

∑c
i=1

∑c
j=1wijpij ,

Pe =
∑c

i=1

∑c
j=1wijpi.p.i,

pi., p.i ‐ total sums of columns and rows of the probability contingency table.

Note
κ̂ denotes the concordance coefficient in the sample, while κ in the population.

The standard error for Kappa is expressed by the formula:

SEκ̂ =
1

(1− Pe)
√
n

√√√√ c∑
i=1

c∑
j=1

pi.p.j [wij − (wi. + (w.j)]2 − P 2
e

where:

wi. =
∑c

j=1 p.jwij ,
w.j =

∑c
i=1 pi.wij .

The Z test of significance for the Cohen’s Kappa (κ̂) (Fleiss,2003[61]) is used to verify the hypothesis
informing us about the agreement of the results of two‐times measurements X(1) and X(2) features
X and it is based on the κ̂ coefficient calculated for the sample.

Basic assumptions:

– measurement on a nominal scale (unweighted Kappa) or on a nominal scale (weighted Kappa).

Hypotheses:

H0 : κ = 0,
H1 : κ ̸= 0.

The test statistic is defined by:
Z =

κ̂

SEκdistr

,

Where:

SEκdistr
=

1

(1− Pe)
√
n

√√√√ c∑
i=1

c∑
j=1

pij [wij − (wi. + w.j)(1− κ̂)]2 − [κ̂− Pe(1− κ̂)]2.
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The Z statistic asymptotically (for a large sample size) has the normal distribution.

The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

The settings window with the test of Cohen’s Kappa significance can be opened in Statistics menu→
NonParametric tests → Kappa-Cohen or in Wizard.

EXAMPLE 21.3. (diagnosis.pqs file)
You want to analyse the compatibility of a diagnosis made by 2 doctors. To do this, you need to draw
110 patients (children) from a population. The doctors treat patients in a neighbouring doctors’ offices.
Each patient is examined first by the doctor A and then by the doctor B. Both diagnoses, made by the
doctors, are shown in the table below.

Hypotheses:

H0 : κ = 0,
H1 : κ ̸= 0.

We could analyse the agreement of the diagnoses using just the percentage of the compatible values.
In this example, the compatible diagnoses were made for 73 patients (31+39+3=73) which is 66.36%
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of the analysed group. The kappa coefficient introduces the correction of a chance agreement (it takes
into account the agreement occurring by chance).

The agreement with a chance adjustment κ̂ = 44, 58% is smaller than the one which is not adjusted
for the chances of an agreement.

The p value < 0.0001. Such result proves an agreement between these 2 doctors’ opinions, on the
significance level α = 0.05,.
EXAMPLE 21.4. (radiology.pqs file)
Radiological imaging assessed liver damage in the following categories: no changes (1), mild changes
(2), suspicion of cancer (3), cancer (4). The evaluationwas done by two independent radiologists based
on a group of 70 patients. We want to check the concordance of the diagnosis.

Hypotheses:
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H0 : κ = 0,
H1 : κ ̸= 0.

Because the diagnosis is issued on an ordinal scale, an appropriate measure of concordance would be
the weighted Kappa coefficient.

Because the data are mainly concentrated on the main diagonal of the matrix and in close proximity to
it, the coefficient weighted by the linear weights is lower (κ̂ = 0.39) than the coefficient determined
for the quadratic weights (κ̂ = 0.42). In both situations, this is a statistically significant result (at the
α = 0.05 significance level), p < 0.0001.

If there was a large disagreement in the ratings concerning the two extreme cases and the pair: (no
change and cancer) located in the upper right corner of the table occurred far more often, e.g., 15
times, then such a large disagreement would be more apparent when using quadratic weights (the
Kappa coefficient would drop dramatically) than when using linear weights.
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21.2.3 The Kappa Fleiss coefficient and a test to examine its significance

This coefficient determines the concordanceofmeasurements conductedby a few judges (Fleiss, 1971[59])
and is an extension of Cohen’s Kappa coefficient, which allows testing the concordance of only two jud‐
ges. With that said, it should be noted that each of n randomly selected objects can be judged by a
different random set of k judges. The analysis is based on data transformed into a table with n rows
and c columns, where c is the number of possible categories to which the judges assign the test objects.
Thus, each row in the table gives xij , which is the number of judges making the judgments specified in
that column.

The Kappa coefficient (κ̂) is then expressed by the formula:

κ̂ =
Po − Pe

1− Pe
,

where:
Po =

1
kn(k−1)

∑n
i=1

∑c
j=1 xij − kn,

Pe =
∑c

i=1 q
2
j ,

qj =
1
km

∑n
i=1 xij .

A value of κ̂ = 1 indicates full agreement among judges, while κ̂ = 0 indicates the concordance that
would arise if the judges’ opinions were given at random. Negative values of Kappa, on the other hand,
indicate concordance less than that at random.

For a coefficient of κ̂ the standard error SE can be determined, which allows statistical significance to
be tested and asymptotic confidence intervals to be determined.

Z test for significance of Fleiss’ Kappa coefficient (κ̂) (Fleiss, 2003[61]) is used to test the hypothesis
that the ratings of several judges are consistent and is based on the coefficient κ̂ calculated for the
sample.

Basic assumptions:

– measurement on a nominal scale – possible category ordering is not taken into account.

Hypotheses:

H0 : κ = 0,
H1 : κ ̸= 0.

The test statistic has the form:
Z =

κ̂

SE
,

The Z statistic asymptotically (for large sample sizes) has the normal distribution.

The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

Note
The determination of Fleiss’s Kappa coefficient is conceptually similar to the Mantel‐Haenszel method.
The determined Kappa is a general measure that summarizes the concordance of all judge ratings and
can be determined as the Kappa formed from individual layers, which are specific judge ratings (Fleiss,
2003[61]). Therefore, as a summary of each layer, the judges’ concordance (Kappa coefficient) can be
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determined summarizing each possible rating separately.

The settings window with the test of the Fleiss’s Kappa significance can be opened in Statistics
menu→NonParametric tests→Fleiss Kappa.
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EXAMPLE 21.5. (temperament.pqs file)
20 volunteers take part in a game to determine their personality type. Each volunteer has a rating gi‐
ven by 7 different observers (usually people from their close circle or family). Each observer has been
introduced to the basic traits describing temperament in each personality type: choleric, phlegmatic,
melancholic, sanguine. We examine observers’ concordance in assigning personality types. An excerpt
of the data is shown in the table below.

Hypotheses:

H0 : κ = 0,
H1 : κ ̸= 0.
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We observe an unimpressive Kappa coefficient = 0.24, but statistically significant (p<0.0001), indicating
non‐random agreement between judges’ ratings. The significant concordance applies to each grade, as
evidenced by the concordance summary report for each stratum (for each grade) and the graph showing
the individual Kappa coefficients and Kappa summarizing the total.
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It may be interesting to note that the highest concordance is for the evaluation of phlegmatics (Kap‐
pa=0.48).

With a small number of people observed, it is also useful to make a graph showing how observers rated
each person.

In this case, only person no 14 received an unambiguous personality type rating – sanguine. Person no.
13 and 16 were assessed as phlegmatic by 6 observers (out of 7 possible). In the case of the remaining
persons, there was slightly less agreement in the ratings. The most difficult to define personality type
seems to be characteristic of the last person, who received the most diverse set of ratings.
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22 DIAGNOSTIC TESTS

22.1 EVALUATION OF DIAGNOSTIC TEST
Suppose that using a diagnostic test we calculate the occurrence of a particular feature (most often
disease) and know the gold‐standard, so we know that the feature really occurs among the examined
people. On the basis of these information, we can build a 2× 2 contingency table:

Observed frequencies Reality (gold‐standard)
disease (+) disease free (–) Total

diagnostic test
positive result (+) TP FP TP+FP
negative result (–) FN TN FN+TN

Total TP+FN FP+TN n=TP+FP+FN+TN

where:
TP – true positive
FP – false positive
FN – false negative
TN – true negative

For such a table we can calculate the following measurements.

• Sensitivity and specificity of diagnostic test

Every diagnostic test, in some cases, can obtain results different than actual results, for example
a diagnostic test, basing on the obtained parameters, classifies a patient to the group of people
suffering from a particular disease, or to the group of healthy people. In reality, the number of
people approved for the above groups by the test may differ from the number of people genu‐
inely ill and genuinely healthy.

There are two evaluation measurements of the test accuracy. They are:

Sensitivity – describes the ability to detect people genuinely ill (having a particular feature).
If we examine a group of ill people, the sensitivity provides us with the information what
percentage of them have a positive test result.

sensitivity =
TP

TP + FN

Confidence interval is built on the basis of the Clopper‐Pearson method for a single propor‐
tion.

Specificity – describes the ability to detect people genuinely healthy (without a particular fe‐
ature). If we examine a group of genuinely healthy people, the specificity provides us with
the information about the percentage of people having a negative test result.

specificity =
TN

FP + TN

Confidence interval is built on the basis of the Clopper‐Pearson method for a single propor‐
tion.

• Positive predictive values, negative predictive values and prevalence rate
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Positive predictive value (PPV ) – the probability, that a person having a positive test result suf‐
fered from a disease. If the examined person obtains a positive test result, the PPV informs
them how they can be sure, that they suffer from a particular disease.

PPV =
TP

TP + FP

Confidence interval is built on the basis of the Clopper‐Pearson method for a single propor‐
tion.

Negative predictive value (hypertargetNPVNPV ) – the probability that a person having a ne‐
gative test result did not suffer from any disease. If the examined person obtains a negative
test result, the NPV informs them how they can be sure that they do not suffer from a par‐
ticular disease.

NPV =
TN

FN + TN

Confidence interval is built on the basis of the Clopper‐Pearson method for a single propor‐
tion.

Positive and negative predictive values depend on the prevalence rate.

Prevalence – probability of disease in the population forwhich the diagnostic test was conducted.

prevalence =
TP + FN

n

Confidence interval is built on the basis of the Clopper‐Pearson method for a single proportion.

• Likelihood ratio of positive test and likelihood ratio of negative test

Likelihood ratio of positive test (LR+) – this measurement enables the comparison of some
test results matching to the gold‐standard. It does not depend on the prevalence of the
disease. It is the ratio of two odds: the odds that a person from the group of ill people will
obtain a positive test result, and the same effect will be observed among healthy people.

LR+ =
sensitivity

1− specificity
=

TP (TP + FN)

FP (FP + TN)

Confidence interval for LR+ is built on the basis of the standard error:

SE =

√
1− sensitivity

TP
+

specificity
FP

.

Likelihood ratio of negative test (LR−) – it is the ratio of two odds: the odds that a person from
the group of ill people will obtain a negative test result, and the same effect will be observed
among healthy people.

LR− =
1− sensitivity
specificity

=
FN (TP + FN)

TN (FP + TN)

Confidence interval for LR− is built on the basis of the standard error:

SE =

√
sensitivity

FN
+

1− specificity
TN

.

• Accuracy
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Accuracy (Acc) – the probability of a correct diagnose using a diagnostic test. If the examined
person obtains a positive or a negative test result, the Acc informs how they can be sure
about the definitive diagnosis.

Acc =
TP + TN

n

Confidence interval is built on the basis of the Clopper‐Pearson method for a single proportion.

• Diagnostic Odds Ratio

Diagnostic Odds Ratio− is the ratio of two chances: the chance of a positive test result from a
diseased person to the chance of a positive test result from a healthy person.

DOR =
TP/FN

FP/TN

Confidence interval forDOR is built on the basis of the standard error:

SE =

√
1

TP
+

1

FN
+

1

FP
+

1

TN
.

The settings window with the diagnostic tests can be opened in Advanced stistics menu→Diagnostic
tests → Diagnostic tests

EXAMPLE 22.1. (mammography.pqs file)
Mammography is one of themost popular screening tests which enables the detection of breast cancer.
The following study has been carried out on the group of 250 people, so‐called ”asymptomatic” women
at the age from 40 to 50. Mammography can detect an outbreak of cancer smaller than 5 mm and
enables to note the change which is not a nodule yet but a change in the structure of tissues.
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Observed frequencies Reality (histopatology)
disease (+) disease free (–) Total

mammography
positive result (+) 9 10 19
negative result (–) 1 230 231

Total 10 240 250

We will calculate the values enabling the assessment of the performed diagnostic test.
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• 90% of women suffering from breast cancer have been correctly defined, so they have obtained
the positive result of mammography;

• 95.83% of healthy women (not suffering from breast cancer) have been correctly defined, so they
have obtained the negative result of mammography;

• 4 out of 100 examined women suffer from breast cancer;

• A womanwho have obtained a positivemammography result can be 47.37% sure that she suffers
from breast cancer;

• A women who have obtained a negative test result can be 99.57% sure that she does not suffer
from breast cancer;

• The probability that the positive mammography result will be obtained by a woman genuinely
suffering from cancer is 21.60 times greater than the probability that the positive mammography
result will be obtained by a healthy woman (not suffering from breast cancer);

• The probability that the negative mammography result will be obtained by a woman genuinely
suffering from breast cancer is 10.43% of the probability that the negative mammography result
will be obtained by a healthy woman (not suffering from breast cancer);

• A woman undergoing mammography (regardless of age) can be 96.50% sure of the definitive
diagnosis;

• The chance of a positive test result in awomanwho actually has breast cancer is 207 times greater
than the chance of such a result in a healthy woman.

22.2 The ROC CURVE

The diagnostic test is used for differentiating objects with a given feature (marked as (+), e.g. ill pe‐
ople) from objects without the feature (marked as (–), e.g. healthy people). For the diagnostic test to
be considered valuable, it should yield a relatively small number of wrong classifications. If the test is
based on a dichotomous variable then the proper tool for the evaluation of the quality of the test is the
analysis of a 2 × 2 contingency table of true positive (TP), true negative (TN), false positive (FP), and
false negative (FN) values. Most frequently, though, diagnostic tests are based on continuous variables
or ordered categorical variables. In such a situation the proper means of evaluating the capability of
the test for differentiating (+) and (–) are ROC (Receiver Operating Characteristic) curves.

It is frequently observed that the greater the value of the diagnostic variable, the greater the odds of
occurrence of the studied phenomenon, or the other way round: the smaller the value of the diagnostic
variable, the smaller the odds of occurrence of the studied phenomenon. Then, with the use of ROC
curves, the choice of the optimum cut‐off is made, i.e. the choice of a certain value of the diagnostic
variable which best separates the studied statistical population into two groups: (+) in which the given
phenomenon occurs and (–) in which the given phenomenon does not occur.

When, on the basis of the studies of the same objects, two or more ROC curves are constructed, one
can compare the curves with regard to the quality of classification.

Let us assume that we have at our disposal a sample of n elements, in which each object has one of the
k values of the diagnostic variable. Each of the received values of the diagnostic variable x1, x2, ...xk
becomes the cut‐off xcat.

If the diagnostic variable is:
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• stimulant (the growth of its value makes the odds of occurrence of the studied phenomenon
greater), then values greater than or equal to the cut‐off (xi >= xcat) are classified in group (+);

• destimulant (the growth of its value makes the odds of occurrence of the studied phenomenon
smaller), then values smaller than or equal to the cut‐off (xi >= xcat) are classified in group (+);

For each of the k cut‐offs we define true positive (TP), true negative (TN), false positive (FP), and false
negative (FN) values.

stimulant Reality
(+) (–)

diagnostic variable xi >= xcat (+) TP FP
xi < xcat (–) FN TN

destimulant Reality
(+) (–)

diagnostic variable xi <= xcat (+) TP FP
xi > xcat (–) FN TN

On the basis of those values each cut‐off xcat can be further described by means of sensitivity and spe‐
cificity, positive predictive values(PPV ), negative predictive values (NPV ), positive result likelihood
ratio (LR+), negative result likelihood ratio (LR−), and accuracy (Acc).

Note
The PQStat program computes the prevalence coefficient on the basis of the sample. The computed pre‐
valence coefficient will reflect the occurrence of the studied phenomenon (illness) in the population in
the case of screening of a large sample representing the population. If only people with suspected ill‐
ness are directed to medical examinations, then the computed prevalence coefficient for them can be
much higher than the prevalence coefficient for the population.
Because both the positive and negative predictive value depend on the prevalence coefficient, when
the coefficient for the population is known a priori, we can use it to compute, for each cut‐off xcat,
corrected predictive values according to Bayes’s formulas:

PPVrevised =
Sensitivity · Papriori

Sensitivity · Papriori + (1− Specificity) · (1− Papriori)

NPVrevised =
Specificity · (1− Papriori)

Specificity · (1− Papriori) + (1− Sensitivity) · Papriori

where:
Papriori ‐ the prevalence coefficient put in by the user, the so‐called pre‐test probability of
disease

xcat sensitivity specificity PPV NPV LR+ LR− Acc PPVrev NPVrev

x1 sensitivity1 specificity1 PPV1 NPV1 LR+1 LR−1 Acc1 PPVrev1 NPVrev1

x2 sensitivity2 specificity2 PPV2 NPV2 LR+2 LR−2 Acc2 PPVrev2 NPVrev2

...
...

...
...

...
...

...
...

...
...

xk sensitivityk specificityk PPVk NPVk LR+k LR−k Acck PPVrevk NPVrevk

The ROC curve is created on the basis of the calculated values of sensitivity and specificity. On the
abscissa axis the x=1‐specificity is placed, and on the ordinate axis y=sensitivity. The points obtained
in that manner are linked. The constructed curve, especially the area under the curve, presents the
classification quality of the analyzed diagnostic variable. When the ROC curve coincides with the dia‐
gonal y = x, then the decision made on the basis of the diagnostic variable is as good as the random
distribution of studied objects into group (+) and group (–).

Copyright ©2010‐2023 PQStat Software – All rights reserved 344



22 DIAGNOSTIC TESTS

AUC (area under curve) – the size of the area under the ROC curve falls within < 0; 1 >. The greater
the field the more exact the classification of the objects in group (+) and group (–) on the basis of the
analyzed diagnostic variable. Therefore, that diagnostic variable can be even more useful as a classifier.
The area AUC, error SEAUC and confidence interval for AUC are calculated on the basis of:

⋆ nonparametricDeLongmethod (DeLong E.R. et al. 1988[50], Hanley J.A. i Hajian‐Tilaki K.O. 1997[?])
‐ recommended,

⋆ nonparametric Hanley‐McNeilmethod (Hanley J.A. i McNeil M.D. 1982[73]),

⋆ Hanley‐McNeil method which presumes double negative exponential distribution (Hanley J.A. i
McNeil M.D. 1982[73]) ‐ computed only when groups (+) and (–) are equinumerous.

For the classification to be better than random distribution of objects into to classes, the area under
the ROC curve should be significantly larger than the area under the line y = x, i.e. than 0.5.

Hypotheses:

H0 : AUC = 0.5,
H1 : AUC ̸= 0.5.

The test statistics has the form presented below:

Z =
AUC − 0.5

SE0.5
,

where:
SE0.5 =

√
n(+)+n(−)+1

12n(+)n(−)
,

n(+) – size of the sample (+) in which the given phenomenon occurs,
n(−) – size of the sample (–), in which the given phenomenon does not occur.

The Z statistic asymptotically (for large sample sizes) has the normal distribution.
The p value, designated on the basis of the test statistic, is compared with the significance level α:
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if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

In addition, when we assume that the diagnostic parameter forms a high field (AUC), we can select the
optimal cut‐off point.

22.2.1 Selection of optimum cut‐off

The point which is looked for is a certain value of the diagnostic variable, which provides the optimum
separation of the studied population into to groups: (+) in which the given phenomenon occurs and
(–) in which the given phenomenon does not occur. The selection of the optimum cut‐off is not easy
because it requires specialist knowledge about the topic of the study. For example, different cut‐offs
will be required in, on the one hand, a test used for screening of a large group of people, e.g. for amam‐
mography study, and, on the other hand, in invasive studies conducted for the purpose of confirming
an earlier suspicion, e.g. in histopathology. With the help of an advanced mathematical apparatus we
can find a cut‐off which will be the most useful from the perspective of mathematics.

PQStat allows you to select the optimal cut‐off point by:

• Tangent method (cost index) – calculated based on sensitivity, specificity, cost of erroneous de‐
cisions and prevalence.

Errors which can be made when classifying the studied objects as belonging to group (+) and gro‐
up (–) are false positive results (FP ) and false negative results (FN ). If committing those errors
is equally costly (ethical, financial, and other costs), then in the field Cost FP and in the field
Cost FN we enter the same positive value – usually 1. However, if we come to the conclusion
that one type of error is encumbered with a greater cost than the other one, then we will assign
appropriately greater weight to it.

The optimum cut‐off value is calculated on the basis of sensitivity, specificity, and with the help
of valuem – slope of the tangent line to the ROC curve. The slope anglem is defined in relation
to two values: the costs of wrong decisions and the prevalence coefficient. Normally the costs of
wrong decisions have the value 1 and the prevalence coefficient is estimated from the sample.
Knowing, a priori, the prevalence coefficient (Papriori) and the costs of wrong decisions, the user
can influence the valuem and, consequently, the search for an optimum cut‐off. As a result, the
optimum cut‐off is determined to be such a value of the diagnostic variable for which the formula:

Sensitivity−m · (1− Specificity)

reaches the minimum (Zweig M.H. 1993[178]).

The optimum cut‐off point of the diagnostic variable, selected as described above, will finally be
marked on the ROC curve.

• Costs graph – presents the calculated values of an wrong diagnosis together with their costs. The
values are computed according to the formula:

cost = costFP · FP + costFN · FN

The point marked on the graph is the minimum of the function presented above.

• Youden’s Index – Conceptually, it is themaximumdistance between the line that is the diagonal of
a square of side 1 and the point of the ROC curve [175]. This index is calculated from the formula:

d = Sensitivity+ Specificity− 1
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The optimal cut‐off point of the diagnostic variable thus selected will eventually be marked on
the ROC curve plot.

• Distance from the top left corner – Conceptually, it is the minimum distance between the upper
left corner of a square of side 1 (i.e., the place where sensitivity and specificity can be highest)
and the point of the ROC curve. This index is calculated from the formula:

d =
√
(1− Sensitivity)2 + (1− Sspecificity)2

The optimal cut‐off point of the diagnostic variable thus selected will eventually be marked on
the ROC curve plot.

• Costs graph – presents the calculated values of an wrong diagnosis together with their costs. The
values are computed according to the formula:

cost = costFP · FP + costFN · FN

The point marked on the graph is the minimum of the function presented above.

• Sensitivity and specificity intersection graph – allows the localization of the point in which the
value of sensitivity and specificity is simultaneously the greatest.

The windowwith settings for ROC analysis is accessed via the menu Advanced statistics → Diagnostic
tests→ROC curve.

EXAMPLE 22.2. (file bacteriemia.pqs)
Persistent high fever in an infant or a small child without clearly diagnosed reasons is a premise for
testing for bacteremia. The most useful and reliable parameters for screening and monitoring bacterial
infections are the following indicators:
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WBC – the number of white blood cells

PCT – procalcitonin.

It is assumed that in a healthy infant or a small child WBC should not exceed 15 thousand/µl and PCT
should be lower than 0.5 ng/ml.
The sample values of those indicators for 136 children of up to 3 years old with persistent fever> 390C
is presented in the table fragment below:

One method of analyzing the PCT indicator is transforming it into a dichotomous variable by selecting a
cut‐off (e.g. xcat=0.5 ng/ml) above which the study is considered to be ”positive”. The level of adequacy
of such a division will be indicated by the value of sensitivity and specificity. We want to use a more
complex approach, that is, calculate the sensitivity and specificity not only for one value but for each
PCT value obtained in the sample ‐ which means constructing a ROC curve. On the basis of the infor‐
mation obtained in that manner we want to check if the PTC indicator is indeed useful for diagnosing
bacteremia. If so, then we want to check what is the optimal cut‐off above which we can consider the
study to be ”positive” – detecting bacteremia.

In order to check if PTC is really useful for diagnosing bacteremia we will calculate the size of the area
under the ROC curve and verify the hypothesis that:

H0 : area under the constructed ROC curve= 0.5,
H1 : area under the constructed ROC curve ̸= 0.5.

As bacteremia is accompanied by an increased PCT level, in the test options window we will consider
the indicator to be a stimulant. In the state variable we have to define which value in the bacteremia
column determines its presence, then we select ”yes”. Apart from the result of the statistical test, in the
report we can find an exact description of every possible cut‐off.
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The calculated size of the area under the ROC curve is AUC = 0.889. Therefore, on the basis of the
adopted level α = 0.05, based on the obtained value p < 0.0001 we assume that diagnosing bacte‐
remia with the use of the PCT indicator is indeed more useful than a random distribution of patients
into 2 groups: suffering from bacteremia and not suffering from it. Therefore, we return to the analysis

(button ) to define the optimal cut‐off.

The algorithm of searching for the optimal cut‐off takes into account the costs of wrong decisions and
the prevalence coefficient.

(1) FN cost - wrong diagnosis is the cost of assuming that the patient does not suffer from bactere‐
mia although in reality he or she is suffering from it (costs of a falsely negative decision)

(2) FP cost - wrong diagnosis, is the cost of assuming that the patient suffers from bacteremia
although in reality he or she is not suffering from it (costs of a falsely positive decision)
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As the FN costs are much more serious than the FP costs, we enter a greater value in field one than in
field two. We decided the value would be 5.

The PCT value is to be used in screening so we do not give the prevalence coefficient for the population
(a priori prevalence coefficient) which is very low but we use the estimated coefficient from the sample.
We do so in order not to move the cut‐off of the PCT value too high and not to increase the number of
falsely negative results.

The optimal PCT cut‐off determined in this way is 1.819. For this point sensitivity=0.85 and specifici‐
ty=0.96.

Another method of selecting the cut‐off is the anlysis of the costs graph and of the sensitivity intersec‐
tion graph:
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The analysis of the costs graph shows that theminimumof the costs ofwrongdecisions lies at PCT=1.819.
The value of sensitivity and specificity is similar at PCT=1.071.

22.2.2 ROC curves comparison

Very often the aim of studies is the comparison of the size of the area under the ROC curve (AUC1)
with the area under another ROC curve (AUC2). The ROC curve with a greater area usually allows a
more precise classification of objects.
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Methods for comparing the areas depend on the model of the study.

• Dependent model – the compared ROC curves are constructed on the basis of measurements
made on the same objects.

Hypotheses:

H0 : AUC1 = AUC2,
H1 : AUC1 ̸= AUC2.

The test statistics has the form presented below:

Z =
|AUC1 −AUC2|
SEAUC1−AUC2

,

where:
AUC1, AUC2 and the standard error of the difference in areas SEAUC1−AUC2 are
calculated on the basis of the nonparametric method proposed by DeLong (DeLong
E.R. et al., 1988[50], Hanley J.A., and Hajian‐Tilaki K.O. 1997[?])

Statistics Z has (for large sizes) asymptotic normal distribution.
The p value, designated on the basis of the test statistic, is compared with the significance level
α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

The window with settings for comparing dependent ROC curves is accessed via the menu Ad-
vanced statistics → Diagnostic tests → Dependent ROC Curves – comparison.
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• Independent model – the compared ROC curves are constructed on the basis of measurements
made on different objects.

Hypotheses:

H0 : AUC1 = AUC2,
H1 : AUC1 ̸= AUC2.

Test statistics (Hanley J.A. and McNeil M.D. 1983[74]) has the form:

Z =
|AUC1 −AUC2|√
SE2

AUC1
− SE2

AUC2

,

where:
AUC1, AUC2 and standard errors of areas SEAUC1 , SEAUC2 are calculated on the
basis of:
⋆ nonparametric method DeLong (DeLong E.R. et al. 1988[50], Hanley J.A., and

Hajian‐Tilaki K.O. 1997[?]) ‐ recommended,
⋆ nonparametric Hanley‐McNeilmethod (Hanley J.A. and McNeil M.D. 1982[73]),
⋆ method which presumes double negative exponential distribution (Hanley J.A.

and McNeil M.D. 1982[73]) ‐ computed only when groups (+) and (–) are equinu‐
merous.

Statistics Z has (for large sizes) asymptotic normal distribution.
On the basis of test statistics p value is estimated and then compared with the significance level
α:

if p ≤ α =⇒ we rejectH0 and acceptH1,
if p > α =⇒ there is no basis for rejectingH0.

The window with settings for comparing independent ROC curves is accessed via the menu Advanced
statistics→Diagnostic tests→Independent ROC Curves – comparison
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EXAMPLE (22.2) c.d. (bacteriemia.pqs file )

We will make 2 comparisons:

1) We will construct 2 ROC curves to compare the diagnostic value of parameters WBC and PCT;

2) We will construct 2 ROC curves to compare the diagnostic value of PCT parameter for boys and
girls.

ad1) Both parameters,WBC and PCT, are stimulants (in bacteremia their values are high). In the course
of the comparisonof the diagnostic value of those parameterswe verify the following hypotheses:

H0 : the area under ROC curve for WBC= the area under the ROC curve for PCT,
H1 : the area under ROC curve for WBC ̸= the area under the ROC curve for PCT.
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The calculated ares are AUCWBC = 086, AUCPCT = 0.90. On the basis of the adopted level
α = 0.05, based on the obtained value p=0.13032 we conclude that we cannot determine which
of the parameters: WBC or PCT is better for diagnosing bacteremia.

ad2) PCT parameter is a stimulant (its value is high in bacteremia). In the course of the comparison of
its diagnostic value for girls and boys we verify the following hypotheses:

H0 : the area under ROC curve for PCTf = the area under ROC curve for PCTm,
H1 : the area under ROC curve for PCTf ̸= the area under ROC curve for PCTm.
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The calculated areas are AUCf = 0.86, AUCm = 0.91. Therefore, on the basis of the adopted
level α = 0.05, based on the obtained value p=0.6372 we conclude that we cannot select the sex
for which PCT parameter is better for diagnosing bacteremia.

Copyright ©2010‐2023 PQStat Software – All rights reserved 357



24 MATCHING GROUPS

23 MULTIDIMENSIONAL MODELS

24 MATCHING GROUPS

Why is group matching done?
There are many answers to this question. Let us use an example of a medical situation.

If we estimate the treatment effect from a fully randomized experiment, then by randomly assigning
subjects to the treated and untreated groups we create groups that are similar in terms of possible
confounding factors. The similarity of the groups is due to the random assignment itself. In such stu‐
dies, we can examine the pure (not dependent on confounding factors) effect of the treatment method
on the outcome of the experiment. In this case, other than random group matching is not necessary.

The possibility of error arises when the difference in treatment outcome between treated and untre‐
ated groups may be due not to the treatment itself, but to a factor that induced people to take part in
the treatment. This occurs when randomization is not possible for some reason, such as it is an observa‐
tional study or for ethical reasons we cannot assign treatment arbitrarily. Artificial group matching may
then be applicable. For example, if the people we assign to the treatment group are healthier people
and the people who are in the control group are people with more severe disease, then it is not the
treatment itself but the condition of the patient before treatment that may affect the outcome of the
experiment. When we see such an imbalance of groups, it is good if we can decide to randomize, in
this way the probem is solved, because drawing people into groups makes them similar. However, we
can imagine another situation. This time the group we are interested in will not be treatment subjects
but smokers, and the control group will be non‐smokers, and the analyses will aim to show the adverse
effect of smoking on the occurrence of lung cancer. Then, in order to test whether smoking does inde‐
ed increase the risk of lung cancer, it would be unethical to perform a fully randomized trial because it
would mean that people randomly selected to the risk group would be forced to smoke. The solution
to this situation is to establish an exposure group, i.e. to select a number of people who already smoke
and then to select a control group of non‐smokers. The control group should be selected because by
leaving the selection to chance wemay get a non‐smoking group that is younger than the smokers only
due to the fact that smoking is becoming less fashionable in our country, so automatically there are
many young people among the non‐smokers.The control should be drawn from non‐smokers, but so
that it is as similar as possible to the treatment group.In this way we are getting closer to examining
the pure (independent of selected confounding factors such as age) effect of smoking/non‐smoking on
the outcome of the experiment, which in this case is the occurrence of lung cancer. Such a selection
can be made by the matching proposed in the program.

One of themain advantages of investigator‐controlledmatching is that the control group becomesmore
similar to the treatment group, but this is also the biggest disadvantage of this method. It is an advan‐
tage because our study is looking more and more like a randomized study. In a randomized trial, the
treatment and control groups are similar on almost all characteristics, including those we don’t study ‐
the random allocation provides us with this similarity. With investigator‐controlled matching, the tre‐
atment and control groups become similar on only selected characteristics.

Ways of assessing similarity:
The first two methods mentioned are based on matching groups through Propensity Score Matching,
PSM. This type of matching was proposed by Rosenbaum and Rubin [136]. In practice, it is a technique
for matching a control group (untreated or minimally/standardly treated subjects) to a treatment gro‐
up on the basis of a probability describing the subjects’ propensity to assign treatment depending on
the observed associated variables. The probability score describing propensity, called the Propensity
Score is a balancing score, so that as a result of matching the control group to the treatment group, the
distribution of measured associated variables becomes more similar between treated and untreated
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subjects. The third method does not determine the probability for each individual, but determines a
distance/dissimilaritymatrix that indicates the objects that are closest/most similar in terms ofmultiple
selected characteristics.
Methods for determining similarity:

• Known probability – the Propensity Score, which is a value between 0 and 1 for each person
tested, indicates the probability of being in the treatment group. This probability can be determi‐
ned beforehand by various methods. For example, in a logistic regression model, through neural
networks, or many other methods. If a person in the group from which we draw controls obtains
a Propensity Score similar to that obtained by a person in the treatment group, then that per‐
son can enter the analysis because the two are similar in terms of the characteristics that were
considered in determining the Propensity Score.

• Calculated from the logistic regression model – because logistic regression is the most commonly
used matching method, PQStat provides the ability to determine a Propensity Score value based
on this method automatically in the analysis window. The matching proceeds further using the
Propensity Score thus obtained.

• Similarity/distance matrix – This option does not determine the value of Propensity Score, but
builds a matrix indicating the distance of each person in the treatment group to the person in
the control group. The user can set the boundary conditions, e.g. he can indicate that the person
matched to a person from the treatment group cannot differ from him by more than 3 years of
age and must be of the same sex. Distances in the constructed matrix are determined based on
any metric or method describing dissimilarity. This method of matching the control group to the
treated group is very flexible. In addition to the arbitrary choice of how the distances/dissimilarity
are determined, in many metrics it allows for the indication of weights that determine how im‐
portant each variable is to the researcher, i.e., the similarity of some variables may be more
important to the researcher while the similarity of others is less important. However, great cau‐
tion is advised when choosing a distance/ dissimilarity matrix. Many features and many sops to
determine distances require prior standardization or normalization of the data, moreover, cho‐
osing the inverse of distance or similarity (rather than dissimilarity) may result in finding themost
distant and dissimilar objects, whereas we normally use these methods to find similar objects. If
the researcher does not have specific reasons for changing the metric, the standard recommen‐
dation is to use statistical distance, i.e. the Mahalanobia metric – It is the most universal, does
not require prior standardization of data and is resistant to correlation of variables.More detailed
description of distances and dissimilarity/similarity measures available in the program as well as
the method of inetrpratation of the obtained results can be found in the Similarity matrix section
.

In practice, there are many methods to indicate how close the objects being compared are, in this case
treated and untreated individuals. Two are proposed in the program:

• Nearest neighbor method – is a standard way of selecting objects not only with a similar Propen‐
sity Score, but also those whose distance/dissimilarity in the matrix is the smallest.

• The nearest neighbor method, closer than... – works in the same way as the nearest neighbor
method, with the difference that only objects that are close enough can be matched. The limit of
this closeness is determined by giving a value describing the threshold, behind which there are
already objects so dissimilar to the tested objects, that we do not want to give them a chance
to join the newly built control group. In the case when analysis is based on Propensity Score or
matrix defined by dissimilarity, the most dissimilar objects are those distant by 1, and the most
similar are those distant by 0. Choosing this method we should give a value closer to 0, when
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we select more restrictively, or closer to 1, when the threshold will be placed further. When we
determine distances instead of dissimilarities in the matrix, then the minimum size is also 0, but
the maximum size is not predetermined.

We can match without returning already drawn objects or with returning these objects again to the
group from which we draw.

• Matching without returning – when using no‐return matching, once an untreated person has
been selected for matching with a given treated person, that untreated person is no longer ava‐
ilable for consideration as a potential match for subsequent treated persons. As a result, each
untreated individual is included in at most one matching set.

• Matching with returning – return matching allows a given untreated individual to be included
more than once in a single matched set. When return matching is used, further analyses, and in
particular variance estimation,must take into account the fact that the same untreated individual
may be in multiple matched sets.

In the case when it is impossible to match the untreated person to the treated one, because in the
group from which we choose there are more persons matching the treated one equally well, then one
of these persons chosen in a random way is combined. For a renewed analysis, a fixed seed is set by
default so that the results of a repeated draw will be the same, but when the analysis is performed
again the seed is changed and the result of the draw may be different.
If it is not possible to match an untreated person to a treated one, because there are no more persons
to join in the group from which we are choosing, e.g. matching persons have already been joined to
other treated persons or the set from which we are choosing has no similar persons, then this person
remains without a pair.

Most often a 1:1match ismade,i.e., for one treated person, one untreated person ismatched. However,
if the original control group fromwhich we draw is large enough and we need to drawmore individuals,
then we can choose to match 1:k, where k indicates the number of individuals that should be matched
to each treated individual.

Matching evaluation
After matching the control group to the treatment group, the results of such matching can be returned
to the worksheet, i.e. a new control group can be obtained. However, we should not assume that by ap‐
plying the matching we will always obtain satisfactory results. In many situations, the group fromwhich
we draw does not have a sufficient number of such objects that are sufficiently similar to the treatment
group. Therefore, the matching performed should always be evaluated. There are many methods of
evaluating the matching of groups. The program uses methods based on standardized group difference
and Propensity Score percentile agreement of the treatment group and the control group, more exten‐
sively described in the work of P.C Austin, among others [13][14]. This approach allows comparison of
the relative balance of variables measured in different units, and the result is not affected by sample
size. The estimation of concordance using statistical tests was abandoned because the matched control
group is usually much smaller than the original control group, so that the obtained p‐values of tests
comparing the test group to the smaller control group are more likely to be left with the null hypothe‐
sis, and therefore do not show significant differences due to the reduced size.

For comparison of continuous variables we determine the standardized mean difference:

d =
(x̄treated − x̄control)√

sd2treated+sd2control
2

where:
x̄treated, x̄control – is the mean value of the variable in the treatment group and the mean
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value of the variable in the control group,
sd2treated, sd2control – is the variance in the treatment group and the variance in the control
group.

To compare binary variables (of two categories, usually 0 and 1) we determine the standardized frequ‐
ency difference:

d =
(p̂treated − p̂control)√

p̂treated(1−p̂treated)+p̂control(1−p̂control)
2

where:
p̂treated, p̂control – is the frequency of the value described as 1 in the treatment group and
the frequency of the value described as 1 in the control group.

Variables with multiple categories we should break down in logistic regression analysis into dummy
variables with two categories and, by checking the fits of both groups, determine the standardized fre‐
quency difference for them.

Note
Although there is no universally agreed criterion for what threshold of standardized difference can be
used to indicate significant imbalance, a standardized difference of less than 0.1 (in both mean and
frequency estimation) can provide a clue. Therefore, to conclude that the groups are well matched,
we should observe standardized differences close to 0, and preferably not outside the range of ‐0.1
to 0.1. Graphically, these results are presented in a dot plot. Negative differences indicate lower me‐
ans/frequencies in the treatment group, positive in the control group.

Note
The 1:1 match obtained in the reports means the summary for the study group and the corresponding
control group obtained in the first match, the 1:2 match means the summary for the study group and
the corresponding control group obtained in the first + second match (i.e., not the study group and the
corresponding control group obtained in the second match only), etc.

The window with the settings of group matching options is launched from the menu Advanced stati-
stics→Multivariate models→Propensity Score
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EXAMPLE 24.1. (matching.pqs file)
Wewant to compare twoways of treating patients after accidents, the traditional way and the new one.
The correct effect of both treatments should be observed in the decreasing levels of selected cytokines.
To compare the effectiveness of the two treatments, they should both be carried out on patients who
are quite similar. Then we will be sure that any differences in the effectiveness of these treatments
will be due to the treatment effect itself and not to other differences between patients assigned to
different groups. The study is a posteriori, that is, it is based on data collected from patients’ treatment
histories. Therefore, the researchers had no influence on the assignment of patients to the new drug
treatment group and the traditional treatment group. It was noted that the traditional treatment was
mainly prescribed to older patients, while the new treatment was prescribed to younger patients, in
whom it is easier to lower cytokine levels. The groups were fairly similar in gender structure, but not
identical.
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If the planned study had been carried out on such selected groups of patients, the newway would have
had an easier challenge, because younger organismsmight have responded better to the treatment. The
conditions of the experiment would not be equal for both ways, which could falsify the results of the
analyses and the conclusions drawn. Therefore, it was decided to match the group treated traditionally
to be similar to the study group treated with the new way. We planned to make the matching with
respect to two characteristics, i.e. age and gender. The traditional treatment group is larger (80 patients)
than the new treatment group (19 patients), so there is a good chance that the groups will be similar.
Random selection is performed by the logistic regression model algorithm embedded in the PSM. We
remember that gender should be coded numerically, since only numerical values are involved in the
logistic regression analysis.We choose nearest neighbor as themethod.Wewant the same person to be
unable to be selected duplicately, so we choose a no return randomization.Wewill try 1:1matching, i.e.
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for each person treated with the new drug we will match one person treated traditionally. Remember
that the matching is random, so it depends on the random value of seed set by our computer, so the
randomization performed by the reader may differ from the values presented here.
A summary of the selection can be seen in the tables and charts.

In the original sample, themean age is more than 14 years higher in traditionally treated patients (diffe‐
rence between means is 14.8072), while the gender structure differs by less than 10% (0.0967). Much
smaller differences are observed between patients treated with the new modality and matched pa‐
tients treated traditionally. We obtain the most information about the quality of the match from the
standardized differences (last column of the table and graph).

The line at 0 indicates equilibrium of the groups (difference between groups equal to 0). When the gro‐
ups are in equilibrium with respect to the given characteristics, then all points on the graph are close
to this line, i.e., around the interval ‐0.1 to 0.1. In the case of the original sample (blue color), we see a
significant departure of Propensity Score. As we know, this mismatch is mainly due to age mismatch –
its standardized difference is at a large distance from 0, and to a lesser extent gender mismatch.
By performing the matching we obtained groups more similar to each other (red color in the graph).
The standardized difference between the groups as determined by Propensity Score is 0.0424, which is
within the specified range. The age of both groups is already similar – the traditional treatment group
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differs from the new treatment group by less than a year on average (the difference between the avera‐
ges presented in the table is 0.2632) and the standardized difference between the averages is ‐0.0277.
In the case of gender, the match is perfect, i.e. the percentage of females and males is the same in both
groups (the standardized difference between the percentages presented in the table and the graph is
now 0). We can return the data prepared in this way to the worksheet and subject it to the analyses we
have planned.

Looking at the summary we just obtained, we can see that despite the good balancing of the groups
and the perfect match of many individuals, there are individuals who are not as similar as we might
expect.

Sometimes in addition to obtaining well‐balanced groups, researchers are interested in determining
the exact way of selecting individuals, i.e. obtaining a greater influence on the similarity of objects as
to the value of Propensity Score or on the similarity of objects as to the value of specific characteristics.
Then, if the group from which we draw is sufficiently large, the analysis may yield results that are more
favorable from the researcher’s point of view, but if in the group from which we draw there is a lack of
objects meeting our criteria, then for some people we will not be able to find a match that meets our
conditions.

• Suppose that wewould like to obtain such groupswhose Propensity Score (i.e., propensity to take
the survey) differs by no more than ...
How to determine this value? You can take a look at the report from the earlier analysis, where
the smallest and largest distance between the drawn objects is given.

In our case the objects closest to each other differ bymin=0, and the furthest bymax=0.5183.We
will try to check what kind of selection we will obtain when we will match to people treated with
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the new method such people treated traditionally, whose Propensity Score will be very close to
e.g. less than 0.01.

We can see that this time with failed to select the whole group. Comparing Propensity Score for
each pair (treatedwith the newmethod and treated traditionally) we can see that the differences
are really small. However, since the matched group is much smaller, to sum up the whole process
we have to notice that both Propensity Score, age and sex are not close enough to the line at 0.
Our will to improve the situation did not lead to the desired effect, and the obtained groups are
not well balanced.
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• Suppose we wanted to obtain such pairs (subjects treated with the new method and subjects
treated traditionally) who are of the same sex and whose ages do not differ bymore than 3 years.
In the Propensity Score‐based randomization, we did not have this type of ability to influence
the extent of concordance of each variable. For this we will use a different method, not based
on Propensity Score, but based on distance/dissimilarity matrices. After selecting the Options
button, we select the proposedMahalanobis statistical distancematrix and set the neighborhood
fit to a maximum distance equal to 3 for age and equal to 0 for gender. As a result, for two people
we failed to find a match, but the remaining matches meet the set criteria.

To summarize the overall draw, we note that although it meets our assumptions, the resulting
groups are not as well balanced as they were in our first draw based on Propensity Score. The
points in red representing the quality of the match by age and the quality of the match by gender
deviate slightly from the line of sameness set at level 0, which means that the average difference
in age and sex structure is now greater than in the first matching.

Copyright ©2010‐2023 PQStat Software – All rights reserved 367



24 MATCHING GROUPS

It is up to the researcher to decide which way of preparing the data will be more beneficial to them.
Finally, when the decision is made, the data can be returned to a new worksheet. To do this, go back to
the report you selected and in the project tree under the right button select the Redo analysis menu.
In the same analysis window, point to the Fit Result button and specify which other variables will be
returned to the new worksheet.

This will result in a new data sheet with side‐by‐side data for people treated with the new treatment
and matched people treated traditionally.

Multivariate regressionmodels provide an opportunity to study the effects of multiple independent
variables (multiple factors) and their interactions on a single dependent variable. Through multivariate
models, it is also possible to buildmany simplifiedmodels at the same time ‐ one‐dimensional (univaria‐
te)models. The information about whichmodel wewant to build (multivariate or univariate) is visible in
the window of the selected analysis. Whenmultiple independent variables are simultaneously selected
in the analysis window, it is possible to choose the model.
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24.1 PREPARATION OF VARIABLES FOR ANALYSIS

24.1.1 Variables coding

When preparing data for a multidimensional analysis there is the problem of appropriate coding of
nominal and ordinal variables. That is an important element of preparing data for analysis as it is a key
factor in the interpretation of the coefficients of a model. The nominal or ordinal variables divide the
analyzed objects into two or more categories. The dichotomous variables (in two categories, k = 2)
must only be appropriately coded, whereas the variables with many categories (k > 2) ought to be
divided into dummy variables with two categories and coded.

k = 2 If a variable is dichotomous, it is the decision of the researcher how the data representing the
variable will be entered, so any numerical codes can be entered, e.g. 0 and 1. In the program one
can change one’s coding into effect coding by selecting that option in the window of the selected
multidimensional analysis. Such coding causes a replacement of the smaller value with value ‐1
and of the greater value with value 1.

k > 2 If a variable has many categories then in the window of the selected multidimensional analysis
we select the button Dummy variables and set the reference/base category for those variables
which we want to break into dummy variables. The variables will be dummy coded unless the
effect coding option will be selected in the window of the analysis – in such a case, they will be
coded as ‐1, 0, and 1.

Dummy coding is employed in order to answer, with the use ofmultidimensionalmodels, the question:
How do the (Y ) results in any analyzed category differ from the results of the reference category.
The coding consists in ascribing value 0 or 1 to each category of the given variable. The category
coded as 0 is, then, the reference category.

k = 2 If the coded variable is dichotomous, then by placing it in a regressionmodelwewill obtain
the coefficient calculated for it, (bi). The coefficient is the reference of the value of the de‐
pendent variable Y for category 1 to the reference category (corrected with the remaining
variables in the model).

k > 2 If the analyzed variable has more than two categories, then k categories are represented
by k−1 dummy variables with dummy coding.When creating variables with dummy coding
one selects a category for which no dummy category is created. That category is treated as
a reference category (as the value of each variable coded in the dummy coding is equal to
0. [0.2cm] When theX1, X2, ..., Xk−1 variables obtained in that way, with dummy coding,
are placed in a regression model, then their b1, b2, ..., bk−1 coefficients will be calculated.
b1 is the reference of the Y results (for codes 1 inX1) to the reference category (corrected

with the remaining variables in the model);
b2 is the reference of the Y results (for codes 1 inX2) to the reference category (corrected

with the remaining variables in the model);
...
bk−1 is the reference of the Y results (for codes 1 inXk−1) to the reference category (cor‐

rected with the remaining variables in the model);

Example
We code, in accordance with dummy coding, the sex variable with two categories (the male sex
will be selected as the reference category), and the education variable with 4 categories (elemen‐
tary education will be selected as the reference category).
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Coded
Sex sex
f 1
f 1
f 1
m 0
m 0
f 1
f 1
m 0
m 0
f 1
m 0
f 1
m 0
f 1
m 0
m 0
... ...

Coded education
Education vocational secondary tertiary
elementary 0 0 0
elementary 0 0 0
elementary 0 0 0
vocational 1 0 0
vocational 1 0 0
vocational 1 0 0
vocational 1 0 0
secondary 0 1 0
secondary 0 1 0
secondary 0 1 0
secondary 0 1 0
tertiary 0 0 1
tertiary 0 0 1
tertiary 0 0 1
tertiary 0 0 1
tertiary 0 0 1

... ... ... ...

Building on the basis of dummy variables, in amultiple regressionmodel, wemight want to check
what impact the variables have on a dependent variable, e.g. Y = the amount of earnings (in tho‐
usands of PLN). As a result of such an analysis we will obtain sample coefficients for each dummy
variable:
‐ for sex the statistically significant coefficient bi = −0.5, which means that average women’s
wages are a half of a thousand PLN lower than men’s wages, assuming that all other variables in
the model remain unchanged;
‐ for vocational education the statistically significant coefficient bi = 0.6, which means that the
average wages of people with elementary education are 0.6 of a thousand PLN higher than tho‐
se of people with elementary education, assuming that all other variables in the model remain
unchanged;
‐ for secondary education the statistically significant coefficient bi = 1, whichmeans that the ave‐
rage wages of people with secondary education are a thousand PLN higher than those of people
with elementary education, assuming that all other variables in the model remain unchanged;
‐ for tertiary‐level education the statistically significant coefficient bi = 1.5, whichmeans that the
average wages of people with tertiary‐level education are 1.5 PLN higher than those of people
with elementary education, assuming that all other variables in the model remain unchanged;

Effect coding is used to answer, with the use of multidimensional models, the question: How do (Y )
results in each analyzed category differ from the results of the (unweighted) mean obtained from
the sample. The coding consists in ascribing value ‐1 or 1 to each category of the given variable.
The category coded as ‐1 is then the base category

k = 2 If the coded variable is dichotomous, then by placing it in a regressionmodelwewill obtain
the coefficient calculated for it, (bi). The coefficient is the reference of Y for category 1 to
the unweighted general mean (corrected with the remaining variables in the model).

If the analyzed variable hasmore than two categories, then k categories are represented by k−1
dummy variables with effect coding. When creating variables with effect coding a category
is selected for which no separate variable is made. The category is treated in the models as
a base category (as in each variable made by effect coding it has values ‐1).

When theX1, X2, ..., Xk−1 variables obtained in that way, with effect coding, are placed in
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a regression model, then their b1, b2, ..., bk−1 coefficients will be calculated.
b1 is the reference of the Y results (for codes 1 in X1) to the unweighted general mean

(corrected by the remaining variables in the model);
b2 is the reference of the Y results (for codes 1 in X2) to the unweighted general mean

(corrected by the remaining variables in the model);
...
bk−1 is the reference of theY results (for codes 1 inXk−1) to the unweighted generalmean

(corrected by the remaining variables in the model);

Example
With the use of effect coding wewill code the sex variable with two categories (themale category
will be the base category) and a variable informing about the region of residence in the analyzed
country. 5 regions were selected: northern, southern, eastern, western, and central. The central
region will be the base one.

Coded
Sex sex
f 1
f 1
f 1
m ‐1
m ‐1
f 1
f 1
m ‐1
m ‐1
f 1
m ‐1
f 1
m ‐1
f 1
m ‐1
m ‐1
... ...

Regions Coded regions
of residence western eastern northern southern

central ‐1 ‐1 ‐1 ‐1
central ‐1 ‐1 ‐1 ‐1
central ‐1 ‐1 ‐1 ‐1
western 1 0 0 0
western 1 0 0 0
western 1 0 0 0
western 1 0 0 0
eastern 0 1 0 0
eastern 0 1 0 0
eastern 0 1 0 0
eastern 0 1 0 0
northern 0 0 1 0
northern 0 0 1 0
southern 0 0 0 1
southern 0 0 0 1
southern 0 0 0 1

... ... ... ... ...

Building on the basis of dummy variables, in amultiple regressionmodel, wemight want to check
what impact the variables have on a dependent variable, e.g.Y = the amount of earnings (expres‐
sed in thousands of PLN). As a result of such an analysis wewill obtain sample coefficients for each
dummy variable:
‐ for sex the statistically significant coefficient bi = −0.5, which means that the average women’s
wages are a half of a thousand PLN lower than the average wages in the country, assuming that
the other variables in the model remain unchanged;
‐ for the western region the statistically significant coefficient bi = 0.6, which means that the
average wages of people living in the western region of the country are 0.6 thousand PLN higher
than the average wages in the country, assuming that the other variables in the model remain
unchanged;
‐ for the eastern region the statistically significant coefficient bi = −1, which means that the
average wages of people living in the eastern region of the country are a thousand PLN lower
than the average wages in the country, assuming that the other variables in the model remain
unchanged;
‐ for the northern region the statistically significant coefficient bi = 0.4, which means that the
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average wages of people living in the western region of the country are 0.4 thousand PLN higher
than the average wages in the country, assuming that the other variables in the model remain
unchanged;
‐ for the southern region the statistically significant coefficient bi = 0.1, which means that the
average wages of people living in the southern region of the country do not differ in a statistically
significant manner from the average wages in the country, assuming that the other variables in
the model remain unchanged;

24.1.2 Interctions

Interactions are considered in multidimensional models. Their presence means that the influence of
the independent variable (X1) on the dependent variable (Y ) differs depending on the level of another
independent variable (X2) or a series of other independent variables. To discuss the interactions in
multidimensional models one must determine the variables informing about possible interactions, i.e
the product of appropriate variables. For that purpose we select the Interactions button in the window
of the selected multidimensional analysis. In the window of interactions settings, with the CTRL button
pressed, we determine the variables which are to form interactions and transfer the variables into the
neighboring list with the use of an arrow. By pressing the OK button wewill obtain appropriate columns
in the datasheet.

In the analysis of the interaction the choice of appropriate coding of dichotomous variables allows the
avoidance of the over‐parametrization related to interactions. Over‐parametrization causes the effects
of the lower order for dichotomous variables to be redundant with respect to the confounding interac‐
tions of the higher order. As a result, the inclusion of the interactions of the higher order in the model
annuls the effect of the interactions of the lower orders, not allowing an appropriate evaluation of the
latter. In order to avoid the over‐parametrization in a model in which there are interactions of dichoto‐
mous variables it is recommended to choose the option effect coding.
In models with interactions, remember to ”trim” them appropriately, so that when removing the main
effects, we also remove the effects of higher orders that depend on them. That is: if in a model we
have the following variables (main effects):X1,X2,X3 and interactions:X1 ∗X2,X1 ∗X3,X2 ∗X3,
X1 ∗X2 ∗X3, then by removing the variableX1 from the model we must also remove the interactions
in which it occurs, viz:X1 ∗X2,X1 ∗X3 andX1 ∗X2 ∗X3.

24.2 MULTIPLE LINEAR REGRESSION

The window with settings for Multiple Regression is accessed via the menu Advanced statistics →
Multidimensional Models→Multiple Regression
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The constructed model of linear regression allows the study of the influence of many independent
variables(X1, X2, . . . , Xk) on one dependent variable(Y ). The most frequently used variety of multi‐
ple regression is Multiple Linear Regression. It is an extension of linear regression models based on
Pearson’s linear correlation coefficient. It presumes the existence of a linear relation between the stu‐
died variables. The linear model of multiple regression has the form:

Y = β0 + β1X1 + β2X2 + . . .+ βkXk + ϵ.

where:
Y ‐ dependent variable, explained by the model,
X1, X2, . . . Xk ‐ independent variables, explanatory,
β0, β1, β2, . . . βk ‐ parameters,
ϵ ‐ random parameter (model residual).

If the model was created on the basis of a data sample of size n the above equation can be presented
in the form of a matrix:

Y = Xβ + ϵ.

where:

Y =


y1
y2
...
yn

 , X =


1 x11 x21 . . . xk1
1 x12 x22 . . . xk2
...

...
... . . . ...

1 x1n x2n . . . xkn

 , β =


β0
β1
β2
...
βk

 , ϵ =


ϵ1
ϵ2
...
ϵn

 .

In such a case, the solution of the equation is the vector of the estimates of parameters β0, β1, . . . , βk
called regression coefficients:
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b =


b0
b1
b2
...
bk

 .

Those coefficients are estimated with the help of the classical least squares method. On the basis of
those values we can infer the magnitude of the effect of the independent variable (for which the coef‐
ficient was estimated) on the dependent variable. They inform by how many units will the dependent
variable change when the independent variable is changed by 1 unit. There is a certain error of estima‐
tion for each coefficient. The magnitude of that error is estimated from the following formula:

SEb =

√
1

n− (k + 1)
eT e(XTX)−1,

where:
e = Y − Ŷ is the vector of model residuals (the difference between the actual values of
the dependent variable Y and the values Ŷ predicted on the basis of the model).

Dummy variables and interactions in the model
A discussion of the coding of dummy variables and interactions is presented in chapter 24.1 Preparation
of the variables for the analysis in multidimensional models.

Note
When constructing the model one should remember that the number of observations should meet the
assumptions (n ≥ 50 + 8k) where k is the number of explanatory variables in the model[70].

24.2.1 Model verification

• Statistical significance of particular variables in the model.

On the basis of the coefficient and its error of estimation we can infer if the independent variable
for which the coefficient was estimated has a significant effect on the dependent variable. For
that purpose we use t‐test.

Hypotheses:

H0 : βi = 0,
H1 : βi ̸= 0.

Let us estimate the test statistics according to the formula below:

t =
bi

SEbi

The test statistics has t‐Student distribution with n− k degrees of freedom.
The p value, designated on the basis of the test statistic, is compared with the significance level
α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

• The quality of the constructed model of multiple linear regression can be evaluated with the
help of several measures.
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– The standard error of estimation – it is the measure of model adequacy:

SEe =

√ ∑n
i=1 e

2
i

n− (k + 1)
.

Themeasure is basedonmodel residuals ei = yi−ŷi, that is on thediscrepancy between the
actual values of the dependent variable yi in the sample and the values of the independent
variable ŷi estimatedon thebasis of the constructedmodel. Itwould bebest if the difference
were as close to zero as possible for all studied properties of the sample. Therefore, for the
model to be well‐fitting, the standard error of estimation (SEe), expressed as ei variance,
should be the smallest possible.

– Multiple correlation coefficient R =
√
R2 ∈< 0; 1 > – defines the strength of the effect

of the set of variablesX1, X2, . . . Xk on the dependent variable Y .
– Multiple determination coefficientR2 – it is the measure of model adequacy.

The value of that coefficient falls within the range of< 0; 1 >, where 1means excellent mo‐
del adequacy, 0 – a complete lack of adequacy. The estimation is made using the following
formula:

TSS = ESS +RSS ,

where:
TSS – total sum of squares,
ESS – the sum of squares explained by the model,
RSS – residual sum of squares.

The coefficient of determination is estimated from the formula:

R2 =
TSS

ESS
.

It expresses the percentage of the variability of the dependent variable explained by the
model.
As the value of the coefficientR2 depends on model adequacy but is also influenced by the
number of variables in the model and by the sample size, there are situations in which it
can be encumbered with a certain error. That is why a corrected value of that parameter is
estimated:

R2
adj = R2 − k(1−R2)

n− (k + 1)
.

– Information criteria are based on the entropy of information carried by the model (model
uncertainty) i.e. they estimate the information lost when a given model is used to describe
the phenomenon under study. Therefore, we should choose the model with the minimum
value of a given information criterion.
The AIC, AICc and BIC is a kind of trade‐off between goodness of fit and complexity.
The second element of the sum in the information criteria formulas (the so‐called loss or
penalty function) measures the simplicity of the model. It depends on the number of varia‐
bles in the model (k) and the sample size (n). In both cases, this element increases as the
number of variables increases, and this increase is faster the smaller the number of observa‐
tions.The information criterion, however, is not an absolute measure, i.e., if all the models
being compared misdescribe reality in the information criterion there is no point in looking
for a warning.
Akaike information criterion

AIC = n · ln RSS

n
+ 2(k + 1) + (constant)
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where, the constant can be omitted because it is the same in each of the comparedmodels.
This is an asymptotic criterion ‐ suitable for large samples i.e. when n

k+2 > 40. For small
samples, it tends to favor models with a large number of variables.

Example of interpretation of AIC size comparison
Suppose we determined the AIC for three models AIC1=100, AIC2=101.4, AIC3=110.
Then the relative reliability for the model can be determined. This reliability is relative be‐
cause it is determined relative to anothermodel, usually the onewith the smallest AIC value.
We determine it according to the formula: e(AICmin− AICi)/2. Comparing model 2 to model
1, wewill say that the probability that it will minimize the loss of information is about half of
the probability that model 1 will do so (specifically exp((100− 101.4)/2) = 0.497). Comparing
model 3 to model one, we will say that the probability that it will minimize information loss
is a small fraction of the probability that model 1 will do so (specifically exp((100‐ 110)/2) =
0.007).

Akaike coreccted information criterion

AICc = AIC +
2(k + 3)(k + 4)

n− k

Correction of Akaike’s criterion relates to sample size, which makes this measure recom‐
mended also for small sample sizes. Bayes Information Criterion (or Schwarz criterion)

BIC = n · ln RSS

n
+ (k + 1) lnn+ (constant)

where, the constant can be omitted because it is the same in each of the comparedmodels.
Like Akaike’s revised criterion, the BIC takes into account the sample size.

– Error analysis for ex post forecasts:
MAE (mean absolute error) ‐– forecast accuracy specified by MAE informs how much on
average the realised values of the dependent variable will deviate (in absolute value) from
the forecasts.

MAE =
1

n

n∑
i=1

|ei|

MPE (mean percentage error) ‐– informs what average percentage of the realization of the
dependent variable are forecast errors.

MPE =
1

n

n∑
i=1

ei
yi

MAPE (mean absolute percentage error) ‐– informs about the average size of forecast errors
expressed as a percentage of the actual values of the dependent variable. MAPE allows you
to compare the accuracy of forecasts obtained from different models.

MAPE =
1

n

n∑
i=1

∣∣∣∣eiyi
∣∣∣∣

– Statistical significance of all variables in the model
The basic tool for the evaluation of the significance of all variables in the model is the ana‐
lysis of variance test (the F‐test). The test simultaneously verifies 3 equivalent hypotheses:

H0 : all βi = 0,
H0 : R2 = 0,
H0 : linearity of the relation,

H1 : exists βi ̸= 0;
H1 : R2 ̸= 0;
H1 : a lack of a linear relation.
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The test statistics has the form presented below:

F =
EMS

RMS

where:
EMS =

ESS

dfE
– the mean square explained by the model,

RMS =
RSS

dfR
– residual mean square,

dfE = k, dfR = n− (k + 1) – appropriate degrees of freedom.
That statistics is subject to F‐Snedecor distribution with dfE and dfR degrees of freedom.

The p value, designated on the basis of the test statistic, is compared with the significance
level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

24.2.2 More information about the variables in the model

• Standardized b1, b2, . . . , bk – In contrast to rawparameters (which are expressed in different units
of measure, depending on the described variable, and are not directly comparable) the standar‐
dized estimates of the parameters of the model allow the comparison of the contribution of par‐
ticular variables to the explanation of the variance of the dependent variable Y .

• Correlation matrix – contains information about the strength of the relation between particular
variables, that is the Pearson’s correlation coefficient rp ∈< −1; 1 >. The coefficient is used for
the study of the corrrelation of each pair of variables, without taking into consideration the effect
of the remaining variables in the model.

• Covariance matrix – similarly to the correlation matrix it contains information about the linear
relation among particular variables. That value is not standardized.

• Partial correlation coefficient – falls within the range < −1; 1 > and is the measure of correla‐
tion between the specific independent variable Xi (taking into account its correlation with the
remaining variables in the model) and the dependent variable Y (taking into account its correla‐
tion with the remaining variables in the model).
The square of that coefficient is the partial determination coefficient – it falls within the range
< 0; 1 > and defines the relation of only the variance of the given independent variableXi with
that variance of the dependent variable Y which was not explained by other variables in the mo‐
del.
The closer the value of those coefficients to 0, the more useless the information carried by the
studied variable, which means the variable is redundant.

• Semipartial correlation coefficient – falls within the range < −1; 1 > and is the measure of
correlation between the specific independent variableXi (taking into account its correlationwith
the remaining variables in the model) and the dependent variable Y (NOT taking into account its
correlation with the remaining variables in the model).
The square of that coefficient is the semipartial determination coefficient – it falls within the
range < 0; 1 > and defines the relation of only the variance of the given independent variable
Xi with the complete variance of the dependent variable Y .
The closer the value of those coefficients to 0, the more useless the information carried by the
studied variable, which means the variable is redundants.
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• R‐squared (R2 ∈< 0; 1 >) – it represents the percentage of variance of the given independent
variableXi, explained by the remaining independent variables. The closer to value 1 the stronger
the linear relation of the studied variable with the remaining independent variables, which can
mean that the variable is a redundant one.

• Variance inflation factor (V IF ∈< 1;∞)) – determines how much the variance of the estima‐
ted regression coefficient is increased due to collinearity. The closer the value is to 1, the lower
the collinearity and the smaller its effect on the coefficient variance. It is assumed that strong
collinearity occurs when the coefficient VIF>5 [148]. f the variance inflation factor is 5 (

√
5 = 2.2),

this means that the standard error for the coefficient of this variable is 2.2 times larger than if
this variable had zero correlation with other variablesXi.

• Tolerance = 1 − R2 ∈< 0; 1 > – it represents the percentage of variance of the given indepen‐
dent variable Xi, NOT explained by the remaining independent variables. The closer the value
of tolerance is to 0 the stronger the linear relation of the studied variable with the remaining
independent variables, which can mean that the variable is a redundant one.

• A comparison of a full model with a model in which a given variable is removed
The comparison of the two model is made with by means of:

– F test, in a situation in which one variable or more are removed from the model (see: the
comparison of models),

– t‐test, when only one variable is removed from the model. It is the same test that is used
for studying the significance of particular variables in the model.

In the case of removing only one variable the results of both tests are identical.
If the difference between the compared models is statistically significant (the value p ≤ α), the
full model is significantly better than the reducedmodel. It means that the studied variable is not
redundant, it has a significant effect on the given model and should not be removed from it.

• Scatter plots
The charts allow a subjective evaluation of linearity of the relation among the variables and an
identification of outliers. Additionally, scatter plots can be useful in an analysis ofmodel residuals.

24.2.3 Analysis of model residuals

To obtain a correct regression model we should check the basic assumptions concerning model residu‐
als.

• Outliers
The study of the model residual can be a quick source of knowledge about outlier values. Such
observations can disturb the equation of the regression to a large extent because they have a
great effect on the values of the coefficients in the equation. If the given residual ei deviates by
more than 3 standard deviations from the mean value, such an observation can be classified as
an outlier. A removal of an outlier can greatly enhance the model.
Cook’s distance ‐ describes themagnitude of change in regression coefficients produced by omit‐
ting a case. In the program, Cook’s distances for cases that exceed the 50th percentile of the F‐
Snedecor distribution statistic are highlighted in bold F (0.5, k + 1, n− k − 1).
Mahalanobis distance ‐ is dedicated to detecting outliers ‐ high values indicate that a case is
significantly distant from the center of the independent variables. If a case with the highest Ma‐
halanobis value is found among the cases more than 3 deviations away, it will be marked in bold
as the outlier.
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• Normalność rozkładu reszt modelu
Wecheck this assumption visually using aQ‐Qplot of the nromal distribution. The large difference
between the distribution of the residuals and the normal distributionmay disturb the assessment
of the significance of the coefficients of the individual variables in the model.

• Homoscedasticity (homogeneity of variance)
To check if there are areas in which the variance of model residuals is increased or decreased we
use the charts of:

– the residual with respect to predicted values
– the square of the residual with respect to predicted values
– the residual with respect to observed values
– the square of the residual with respect to observed values

• Autocorrelation of model residuals
For the constructed model to be deemed correct the values of residuals should not be correlated
with one another (for all pairs ei, ej). The assumption can be checked by by computing theDurbin‐
Watson statistic.

d =

∑n
t=2 (et − et−1)

2∑n
t=1 e

2
t

,

To test for positive autocorrelation on the significance level α we check the position of the stati‐
stics d with respect to the upper (dU,α) and lower (dL,α) critical value:

– If d < dL,α – the errors are positively correlated;
– If d > dU,α – the errors are not positively correlated;
– If dL,α < d < dU,α – the test result is ambiguous.

To test for negative autocorrelation on the significance level αwe check the position of the value
4− d with respect to the upper (dU,α) and lower (dL,α) critical value:

– If 4− d < dL,α – the errors are negatively correlated;
– If 4− d > dU,α – the errors are not negatively correlated;
– If dL,α < 4− d < dU,α – the test result is ambiguous.

The critical values of theDurbin‐Watson test for the significance levelα = 0.05 are on thewebsite
www.pqstat.com – the source of the: Savin and White tables (1977)[144]

24.2.4 Example for multiple regression

EXAMPLE 24.2. (publisher.pqs file)
A certain book publisherwanted to learn howwas gross profit fromsales influencedby such variables as:
production cost, advertising costs, direct promotion cost, the sum of discounts made, and the author’s
popularity. For that purpose he analyzed 40 titles published during the previous year (teaching set). A
part of the data is presented in the image below:
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The first five variables are expressed in thousands fo dollars ‐ so they are variables gathered on an
interval scale. The last variable: the author’s popularity – is a dychotomic variable, where 1 stands for
a known author, and 0 stands for an unknown author.

On the basis of the knowledge gained from the analysis the publisher wants to predict the gross profit
from the next published book written by a known author. The expenses the publisher will bear are:
production cost≈ 11, advertising costs≈ 13, direct promotion costs≈ 0.5, the sum of discounts made
≈ 0.5.

We construct the model of multiple linear regression, for teaching dataset, selecting: gross profit –
as the dependent variable Y , production cost, advertising costs, direct promotion costs, the sum of
discountsmade, the author’s popularity – as the independent variablesX1, X2, X3, X4, X5. As a result,
the coefficients of the regression equation will be estimated, together with measures which will allow
the evaluation of the quality of the model.
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On the basis of the estimated value of the coefficient b, the relationship between gross profit and all
independent variables can be described by means of the equation:

profitgross = 4.18+2.56(cprod)+2(cadv)+4.67(cprom)+1.42(discounts)+10.15(populauthor)+[8.09]

The obtained coefficients are interpreted in the following manner:

• If the production cost increases by 1 thousand dollars, then gross profit will increase by about
2.56 thousand dollars, assuming that the remaining variables do not change;

• If the production cost increases by 1 thousand dollars, then gross profit will increase by about 2
thousand dollars, assuming that the remaining variables do not change;

• If the production cost increases by 1 thousand dollars, then gross profit will increase by about
4.67 thousand dollars, assuming that the remaining variables do not change;

• If the sum of the discounts made increases by 1 thousand dollars, then gross profit will increase
by about 1.42 thousand dollars, assuming that the remaining variables do not change;

• If the book has been written by a known author (marked as 1), then in the model the author’s
popularity is assumed to be the value 1 and we get the equation:

profitgross = 14.33 + 2.56(cprod) + 2(cadv) + 4.67(cprom) + 1.42(discounts)

If the book has been written by an unknown author (marked as 0), then in themodel the author’s
popularity is assumed to be the value 0 and we get the equation:

profitgross = 4.18 + 2.56(cprod) + 2(cadv) + 4.67(cprom) + 1.42(discounts)

The result of t‐test for each variable shows that only the production cost, advertising costs, and author’s
popularity have a significant influence on the profit gained. At the same time, that standardized coeffi‐
cients b are the greatest for those variables.

Additionally, themodel is very well‐fitting, which is confirmed by: the small standard error of estimation
SEe = 8.087, the high value of the multiple determination coefficientR2 = 0.85, the corrected multi‐
ple determination coefficientR2

adj = 0.83, and the result of the F‐test of variance analysis: p < 0.0001.

On the basis of the interpretation of the results obtained so far we can assume that a part of the varia‐
bles does not have a significant effect on the profit and can be redundant.

For the model to be well formulated the interval independent variables ought to be strongly correlated
with the dependent variable and be relatively weakly correlated with one another. That can be checked
by computing the correlation matrix and the covariance matrix:
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The most coherent information which allows finding those variables in the model which are redundant
is given by the parial and semipartial correlation analysis as well as redundancy analysis:

The values of coefficients of partial and semipartial correlation indicate that the smallest contribution
into the constructed model is that of direct promotion costs and the sum of discounts made. However,
those variables are the least correlated with model residuals, which is indicated by the low value R2

and the high tolerance value. All in all, from the statistical point of view, models without those variables
would not beworse than the currentmodel (see the result of t‐test formodel comparison). The decision
about whether or not to leave that model or to construct a new one without the direct promotion costs
and the sum of discounts made, belongs to the researcher. We will leave the current model.

Finally, we will analyze the residuals. A part of that analysis is presented below:
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It is noticeable that one of the model residuals is an outlier – it deviates by more than 3 standard
deviations from the mean value. It is observation number 16. The observation can be easily found by
drawing a chart of residuals with respect to observed or expected values of the variable Y .
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That outlier undermines the assumption concerning homoscedasticity. The assumption of homosceda‐
sticity would be confirmed (that is, residuals variance presented on the axis Y would be similar when
wemove along the axisX), if we rejected that point. Additionally, the distribution of residuals deviates
slightly from normal distribution (the value p of Liliefors test is p = 0.0164):

When we take a closer look of the outlier (position 16 in the data for the task) we see that the book is
the only one for which the costs are higher than gross profit (gross profit=4 thousand dollars, the sum
of costs = (8+6+0.33+1.6) = 15.93 thousand dollars).

The obtained model can be corrected by removing the outlier. For that purpose, another analysis has
to be conducted, with a filter switched on which will exclude the outlier.

As a result, we receive a model which is very similar to the previous one but is encumbered with a
smaller error and is more adequate:
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profitgross = 6.89+2.68(cprod)+2.08(cadv)+1.92(cprom)+1.33(discounts)+7.38(populauthor)+[4.86]

The final version of themodel will be used for prediction. On the basis of the predicted costs amounting
to:
production cost≈ 11 thousand dollars,
advertising costs≈ 13 thousand dollars,
direct promotion costs≈ 0.5 thousand dollars,
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the sum of discounts made≈ 0.5 thousand dollars,
and the fact that the author is known (the author’s popularity ≈ 1) we calculate the predicted gross
profit together with the confidence interval:

The predicted profit is 72 thousand dollars.

Finally, it should still be noted that this is only a preliminary model. In a proper study more data would
have to be collected. The number of variables in the model is too small in relation to the number of
books evaluated, i.e. n<50+8k.
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24.2.5 Model‐based prediction and test set validation

Validation
Validation of a model is a check of its quality. It is first performed on the data on which the mo‐
del was built (the so‐called training data set), that is, it is returned in a report describing the
resulting model. In order to be able to judge with greater certainty how suitable the model is
for forecasting new data, an important part of the validation is to become a model to data that
were not used in the model estimation. If the summary based on the treining data is satisfactory,
i.e., the determined errorsR2 coefficients and information criteria are at a satisfactory level, and
the summary based on the new data (the so‐called test data set) is equally favorable, then with
high probability it can be concluded that such a model is suitable for prediction. The testing data
should come from the same population from which the training data were selected. It is often
the case that before building a model we collect data, and then randomly divide it into a training
set, i.e. the data that will be used to build the model, and a test set, i.e. the data that will be used
for additional validation of the model.
The settings window with the validation can be opened in Advanced statistics→Multivariate
models→Multiple regression - prediction/validation.

To perform validation, it is necessary to indicate the model on the basis of which we want to
perform the validation. Validation can be done on the basis of:

• multivariate regression model built in PQStat ‐ simply select a model from the models assi‐
gned to the sheet, and the number of variables and model coefficients will be set automa‐
tically; the test set should be in the same sheet as the training set;

• model not built in PQStat but obtained from another source (e.g., described in a scientific
paper we have read) ‐ in the analysis window, enter the number of variables and enter the
coefficients for each of them.

In the analysis window, indicate those new variables that should be used for validation.

Prediction
Most often, the final step in regression analysis is to use the built and previously validated model
for prediction.
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• Prediction for a single object can be performed along with the construction of the model,
that is, in the analysis windowAdvanced statistics→Multivariate models→Multiple regres-
sion ,

• Prediction for a larger groupof newdata is done through themenuAdvanced statistics→Multivariate
models→Multiple regression - prediction/validation.
To make a prediction, it is necessary to indicate the model on the basis of which we want to
make the prediction. Prediction can be made on the basis of:
– multivariate regression model built in PQStat ‐simply select a model from the models

assigned to the sheet, and the number of variables and model coefficients will be set
automatically; the test set should be in the same sheet as the training set;

– model not built in PQStat but obtained from another source (e.g., described in a scienti‐
fic paperwe read) ‐ in the analysis window, the number of variables and the coefficients
on each of them should be entered.

In the analysis window, indicate those new variables that should be used for prediction.

The estimated value is calculated with some error. Therefore, in addition, for the value predicted
by the model, limits are set due to the error:

• confidence intervals are set for the expected value,
• For a single point, prediction intervals are determined.

EXAMPLE 24.2 continued (publisher.pqs file)
To predict gross profit from book sales, the publisher built a regression model based on a training set
stripped of item 16 (that is, 39 books). The model included: production costs, advertising costs and
author popularity (1=popular author, 0=not). We will build the model once again based on the learning
set and then, to make sure the model will work properly, we will validate it on a test data set. If the
model passes this test, we will apply it to predictions for book items. To use the right collections we set
a data filter each time.
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For the training set, the values describing the quality of themodel’s fit are very high: adjustedR2 = 0.93
and the average forecast error (MAE) is 3.7 thousand dollars.
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For the test set, the values describing the quality of the model fit are slightly lower than for the le‐
arning set: Adjusted R2 = 0.80 and the mean error of prediction (MAE) is 5.9 thousand dollars. Since
the validation result on the test set is almost as good as on the training set, we will use the model for
prediction. To do this, we will use the data of three new book items added to the end of the set. We’ll
select Prediction, set filter on the new dataset and use our model to predict the gross profit for these
books.

It turns out that the highest gross profit (between 64 and 85 thousands of dollars) is projected for the
first, most advertised and most expensive book published by a popular author.

Copyright ©2010‐2023 PQStat Software – All rights reserved 390



24 MATCHING GROUPS

24.3 COMPARISON OF MULTIPLE LINEAR REGRESSION MODELS

The window with settings for model comparison is accessed via the menu Advenced statistics → Mul-
tidimensional models→Multiple regression – model comparison

The multiple linear regression offers the possibility of simultaneous analysis of many independent va‐
riables. There appears, then, the problem of choosing the optimummodel. Too large amodel involves a
plethora of information in which the important ones may get lost. Too small a model involves the risk of
omitting those features which could describe the studied phenomenon in a reliable manner. Because it
is not the number of variables in the model but their quality that determines the quality of the model.
To make a proper selection of independent variables it is necessary to have knowledge and experience
connected with the studied phenomenon. One has to remember to put into the model variables stron‐
gly correlated with the dependent variable and weakly correlated with one another.

There is no single, simple statistical rule which would decide about the number of variables necessa‐
ry in the model. The measures of model adequacy most frequently used in a comparison are: R2

adj –
the corrected value of multiple determination coefficient (the higher the value the more adequate the
model), SEe – the standard error of estimation (the lower the value the more adequate the model) or
or information criteria AIC, AICc, BIC (the lower the value, the better the model). For that purpose, the
F‐test based on the multiple determination coefficient R2 can also be used. The test is used to verify
the hypothesis that the adequacy of both compared models is equally good.

Hypotheses:

H0 : R2
FM = R2

RM ,
H1 : R2

FM ̸= R2
RM ,

where:
R2

FM , R2
RM – multiple determination coefficients in compared models (full and reduced).
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The test statistics has the form presented below:

F =
R2

FM −R2
RM

kFM − kRM
· n− kFM − 1

1−R2
FM

,

The statistics is subject to F‐Snedecor distribution with df1 = kFM − kRM and df2 = n − kFM − 1
degrees of freedom.
The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

If the compared models do not differ significantly, we should select the one with a smaller number of
variables. Because a lack of a difference means that the variables present in the full model but absent
from the reducedmodel do not carry significant information. However, if the difference in the quality of
model adequacy is statistically significant, it means that one of them (the one with the greater number
of variables, with a greater R2 or lesser value of the information criterion) is significantly better than
the other one.

In the program PQStat the comparison of models can be done manually or automatically.

• Manualmodel comparison – construction of 2 models:

– a full model – a model with a greater number of variables,
– a reduced model – a model with a smaller number of variables – such a model is created

from the full model by removing those variableswhich are superfluous from the perspective
of studying a given phenomenon.

The choice of independent variables in the compared models and, subsequently, the choice of a
better model on the basis of the results of the comparison, is made by the researcher.

• Automaticmodel comparison is done in several steps:

step 1 Constructing the model with the use of all variables.
step 2 Removing one variable from the model. The removed variable is the one which,

from the statistical point of view, contributes the least information to the current
model.

step 3 A comparison of the full and the reduced model.
step 4 Removing another variable from the model. The removed variable is the one

which, from the statistical point of view, contributes the least information to the
current model.

step 5 A comparison of the previous and the newly reduced model.
...

In that way numerous, ever smaller models are created. The last model only contains 1 indepen‐
dent variable.

As a result, each model is described with the help of adequacy measures (R2
adj , SEe, AIC, AICc,

BIC), and the subsequent (neighboring) models are compared by means of the F‐test. The model
which is finally marked as statistically best is the model with the greatest R2

adj and the smallest
SEe. However, as none of the statistical methods cannot give a full answer to the question which
of the models is the best, it is the researcher who should choose the model on the basis of the
results.
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EXAMPLE (24.2) continued (publisher.pqs file)

To predict the gross profit from book sales a publisher wants to consider such variables as: production
cost, advertising costs, direct promotion cost, the sum of discounts made, and the author’s popularity.
However, not all of those variables need to have a significant effect on profit. Let us try to select such a
model of linear regression which will contain the optimum number of variables (from the perspective
of statistics). For this analysis, we will use teaching set data.

• Manualmodel comparison.
On the basis of the earlier constructed, full model we can suspect that the variables: direct pro‐
motion costs and the sum of discounts made have a small influence on the constructed model
(i.e. those variables do not help predict the greatness of the profit). We will check if, from the
perspective of statistics, the full model is better than the model from which the two variables
have been removed.
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It turns out that there is no basis for thinking that the full model is better than the reducedmodel
(the value p of F‐testwhich is used for comparingmodels is p = 0.4013). Additionally, the reduced
model is slightly more adequate than the full model (for the reduced model R2

adj = 0.8296, for
the full model R2

adj = 0.8291 and has smaller, or more favorable, values of the information
criteria AIC, AIcc, BIC.

• Automaticmodel comparison.
In the case of automatic model comparison we receive very similar results. The best model is the
one with the greatest coefficientR2

adj , the smallest information criteria and the smalles standard
estimation error SEe. The best model we suggest is the model containing only 3 independent
variables: the production cost, advertising costs, and the author’s popularity.

On the basis of the analyses above, from the perspective of statistics, the optimum model is the mo‐
del with the 3 most important independent variables: the production cost, advertising costs, and the
author’s popularity. However, the final decision which model to choose should be made by a person
with specialist knowledge about the studied topic – in this case, the publisher. It ought to be remem‐
bered that the selected model should be constructed anew and its assumptions verified in the window
Multiple regression.
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24.4 LOGISTIC REGRESSION

Thewindowwith settings forLogistic Regression is accessed via themenuAdvanced statistics→Multidimensional
Models→Logistic Regression

The constructed model of logistic regression (similarly to the case of multiple linear regression) allows
the study of the effect of many independent variables (X1, X2, ..., Xk) on one dependent variable(Y ).
This time, however, the dependent variable only assumes two values, e.g. ill/healthy, insolvent/solvent
etc.

The two values are coded as (1)/(0), where:
(1) –the distinguished value –possessing the feature
(0) –not possessing the feature.

The function on which the model of logistic regression is based does not calculate the 2‐level variable
Y but the probability of that variable assuming the distinguished value:

P (Y = 1|X1, X2, ..., Xk) =
eZ

1 + eZ

where:

P (Y = 1|X1, X2, ..., Xk) –the probability of assuming the distinguished value (1) on con‐
dition that specific values of independent variables are achieved, the so‐called probability
predicted for 1.
Z is most often expressed in the form of a linear relationship:

Z = β0 +
∑k

i=1 βiXi,
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X1, X2, . . . Xk –independent variables, explanatory,
β0, β1, β2, . . . βk –parameters.

Dummy variables and interactions in the model
A discussion of the coding of dummy variables and interactions is presented in chapter 24.1
Preparation of the variables for the analysis in multidimensional models.

Note
Function Z can also be described with the use of a higher order relationship, e.g. a square
relationship ‐ in such a case we introduce into the model a variable containing the square
of the independent variableX2

i .

The logit is the transformation of that model into the form:

ln
(

P

1− P

)
= Z.

The matrices involved in the equation, for a sample of size n, are recorded in the following manner:

Y =


y1
y2
...
yn

 , X =


1 x11 x21 . . . xk1
1 x12 x22 . . . xk2
...

...
... . . . ...

1 x1n x2n . . . xkn

 , β =


β0
β1
β2
...
βk

 .

In such a case, the solution of the equation is the vector of the estimates of parameters β0, β1, . . . , βk
called regression coefficients:

b =


b0
b1
b2
...
bk

 .

The coefficients are estimated with the use of the maximum likelihood method, that is through the
search for the maximum value of likelihood function L (in the program the Newton‐Raphson iterative
algorithm was used). On the basis of those values we can infer the magnitude of the effect of the inde‐
pendent variable (for which the coefficient was estimated) on the dependent variable.

There is a certain error of estimation for each coefficient. Themagnitude of that error is estimated from
the following formula:

SEb =
√
diag(H−1)b,

where:

diag(H−1) is the main diagonal of the covariance matrix.

Note
When building the model you need remember that the number of observations should be ten times
greater than or equal to the number of the estimated parameters of the model (n ≥ 10(k+1)). Howe‐
ver, a more restrictive criterion proposed by P. Peduzzi et al. in 1996[130] is increasingly used, stating
that the number of observations should be ten times or equal to the ratio of the number of indepen‐
dent variables (v) and the smaller of the proportion of counts (p)described from the dependent variable
(i.e., proportions of sick or healthy), i.e. (n ≥ 10v/p).
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Note
When building the model you need remember that the independent variables should not be colline‐
ar. In a case of collinearity estimation can be uncertain and the obtained error values very high. The
collinear variables should be removed from the model or one independent variable should be built of
them, e.g. instead of the collinear variables of mother age and father age one can build the parents age
variable.

Note
The criterion of convergence of the function of the Newton‐Raphson iterative algorithm can be control‐
led with the help of two parameters: the limit of convergence iteration (it gives the maximum number
of iterations in which the algorithm should reach convergence) and the convergence criterion (it gives
the value below which the received improvement of estimation shall be considered to be insignificant
and the algorithm will stop).

24.4.1 The Odds Ratio

Individual Odds Ratio
On the basis of many coefficients, for each independent variable in the model an easily interpre‐
ted measure is estimated, i.e. the individual Odds Ratio:

ORi = eβi .

The received Odds Ratio expresses the change of the odds for the occurrence of the distinguished
value (1) when the independent variable grows by 1 unit. The result is corrected with the rema‐
ining independent variables in the model so that it is assumed that they remain at a stable level
while the studied variable is growing by 1 unit.

The OR value is interpreted as follows:

• OR > 1means the stimulating influence of the studied independent variable on obtaining
the distinguished value (1), i.e. it gives information about how much greater are the odds
of the occurrence of the distinguished value (1) when the independent variable grows by 1
unit.

• OR < 1 means the destimulating influence of the studied independent variable on obta‐
ining the distinguished value (1), i.e. it gives information about how much lower are the
odds of the occurrence of the distinguished value (1) when the independent variable grows
by 1 unit.

• OR ≈ 1 means that the studied independent variable has no influence on obtaining the
distinguished value (1).

Odds Ratio ‐ the general formula
The PQStat program calculates the individual Odds Ratio. Itsmodification on the basis of a general
formula makes it possible to change the interpretation of the obtained result.

The Odds Ratio for the occurrence of the distinguished state in a general case is calculated as
the ratio of two odds. Therefore for the independent variable X1 for Z expressed with a linear
relationship we calculate:
the odds for the first category:

Odds(1) =
P (1)

1− P (1)
= eZ(1) = eβ0+β1X1(1)+β2X2+...+βkXk ,

the odds for the second category:

Odds(2) =
P (2)

1− P (2)
= eZ(2) = eβ0+β1X1(2)+β2X2+...+βkXk .
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The Odds Ratio for variableX1 is then expressed with the formula:

OR1(2)/(1) = Odds(2)
Odds(1) =

eβ0+β1X1(2)+β2X2+...+βkXk

eβ0+β1X1(1)+β2X2+...+βkXk

= eβ0+β1X1(2)+β2X2+...+βkXk−[β0+β1X1(1)+β2X2+...+βkXk]

= eβ1X1(2)−β1X1(1) = eβ1[X1(2)−X1(1)] =

=
(
eβ1
)[X1(2)−X1(1)] .

Example

If the independent variable is age expressed in years, then the difference between neighboring
age categories such as 25 and 26 years is 1 year (X1(2)−X1(1) = 26− 25 = 1). In such a case
we will obtain the individual Odds Ratio:

OR =
(
eβ1

)1
,

which expresses the degree of change of the odds for the occurrence of the distinguished value
if the age is changed by 1 year.

The odds ratio calculated for non‐neighboring variable categories, such as 25 and 30 years, will
be a five‐year Odds Ratio, because the differenceX1(2)−X1(1) = 30− 25 = 5. In such a case
we will obtain the five‐year Odds Ratio:

OR =
(
eβ1

)5
,

which expresses the degree of change of the odds for the occurrence of the distinguished value
if the age is changed by 5 years.

Note

If the analysis is made for a non‐linear model or if interaction is taken into account, then, on the
basis of a general formula, we can calculate an appropriate Odds Ratio by changing the formula
which expresses Z.

24.4.2 Model verification

Statistical significance of particular variables in the model (significance of the Odds Ratio)
On the basis of the coefficient and its error of estimation we can infer if the independent variable
for which the coefficient was estimated has a significant effect on the dependent variable. For
that purpose we use Wald test.

Hypotheses:

H0 : βi = 0,
H1 : βi ̸= 0.

or, equivalently: H0 : ORi = 1,
H1 : ORi ̸= 1.

The Wald test statistics is calculated according to the formula:

χ2 =

(
bi

SEbi

)2

The statistic asymptotically (for large sizes) has the χ2 distribution with 1 degree of freedom.
On the basis of test statistics, p value is estimated and then compared with the significance level
α :
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if p ≤ α =⇒ we rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

The quality of the constructed model
A goodmodel should fulfill two basic conditions: it should fit well and be possibly simple. The qu‐
ality of multiple linear regression can be evaluated can be evaluated with a few general measures
based on: LFM –the maximum value of likelihood function of a full model (with all variables),
L0 –the maximum value of the likelihood function of a model which only contains one free word,
n –the sample size.

• Information criteria are based on the information entropy carried by the model (model in‐
security), i.e. they evaluate the lost information when a given model is used to describe the
studied phenomenon. We should, then, choose the model with the minimum value of a gi‐
ven information criterion.
AIC,AICc, andBIC is a kind of a compromise between the good fit and complexity. The
second element of the sum in formulas for information criteria (the so‐called penalty func‐
tion) measures the simplicity of the model. That depends on the number of variables (k) in
themodel and the sample size (n). In both cases the element grows with the increase of the
number of variables and the growth is the faster the smaller the number of observations.
The information criterion, however, is not an absolute measure, i.e. if all the compared mo‐
dels do not describe reality well, there is no use looking for a warning in the information
criterion.
– Akaike information criterion

AIC = −2 lnLFM + 2k,

It is an asymptomatic criterion, appropriate for large sample sizes.
– Corrected Akaike information criterion

AICc = AIC +
2k(k + 1)

n− k − 1
,

Because the correction of the Akaike information criterion concerns the sample size it
is the recommended measure (also for smaller sizes).

– Bayesian information criterion or Schwarz criterion

BIC = −2 lnLFM + k ln(n),

Just like the corrected Akaike criterion it takes into account the sample size.
• PseudoR2 –the so‐calledMcFadden R2 is a goodness of fitmeasure of themodel (an equiva‐

lent of the coefficient of multiple determination R2 defined for multiple linear regression).
The value of that coefficient falls within the range of< 0; 1), where values close to 1 mean
excellent goodness of fit of a model, 0 –a complete lack of fit Coefficient R2

Pseudo is calcu‐
lated according to the formula:

R2
Pseudo = 1− lnLFM

lnL0
.

As coefficientR2
Pseudo never assumes value 1 and is sensitive to the amount of variables in

the model, its corrected value is calculated:

R2
Nagelkerke =

1− e−(2/n)(lnLFM−lnL0)

1− e(2/n) lnL0
lub R2

Cox−Snell = 1− e
(−2 lnL0)−(−2 lnLFM )

n .
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• Statistical significance of all variables in the model
The basic tool for the evaluation of the significance of all variables in the model is the Like‐
lihood Ratio test. The test verifies the hypothesis:

H0 : all βi = 0,
H1 : there is βi ̸= 0.

The test statistic has the form presented below:

χ2 = −2 ln(L0/LFM ) = −2 ln(L0)− (−2 ln(LFM )).

The statistic asymptotically (for large sizes) has the χ2 distribution with k degrees of fre‐
edom.
On the basis of test statistics, p value is estimated and then compared with α :

if p ≤ α =⇒ we rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

• Hosmer‐Lemeshow test –The test compares, for various subgroups of data, the observed
rates of occurrence of the distinguished value Og and the predicted probability Eg. If Og

and Eg are close enough then one can assume that an adequate model has been built.

For the calculation the observations are first divided intoG subgroups –usually deciles (G =
10).

Hypotheses:

H0 : Og = Eg for all categories,
H1 : Og ̸= Eg for at least one category.

The test statistic has the form presented below:

H =

G∑
g=1

(Og − Eg)
2

Eg(1− Eg

Ng
)
,

where:
Ng –the number of observations in group g.

The statistic asymptotically (for large sizes) has the χ2 distribution with G − 2 degrees of
freedom.
On the basis of test statistics, p value is estimated and then compared with α :

if p ≤ α =⇒ we rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

• AUC ‐ the area under the ROC curve –The ROC curve built on th ebasis of the value of
the dependent variable, and the predicted probability of dependent variable P , allows to
evaluate the ability of the constructed logistic regressionmodel to classify the cases into two
groups: (1) and (0). The constructed curve, especially the area under the curve, presents the
classification quality of the model. When the ROC curve overlaps with the diagonal y = x,
then the decision about classifying a case within a given class (1) or (0), made on the basis
of the model, is as good as a random division of the studied cases into the groups. The
classification quality of a model is good when the curve is much above the diagonal y = x,
that is when the area under the ROC curve is much larger than the area under the y = x
line, i.e. it is greater than 0.5

Hypotheses:
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H0 : AUC = 0.5,
H1 : AUC ̸= 0.5.

The test statistic has the form presented below:

Z =
AUC − 0.5

SE0.5
,

where:
SE0.5 –area error.

Statistics Z asymptotically (for large sizes) has the normal distribution.
On the basis of test statistics, p value is estimated and then compared with the significance
level α:

if p ≤ α =⇒ we rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

Additionally, for ROC curve the suggested value of the cut‐off point of the predicted proba‐
bility is given, together with the table of sensitivity and specificity for each possible cut‐off
point.

Note!
More possibilities of calculating a cut‐off point are offered bymodule ROC curve. The analy‐
sis ismade on the basis of observed values and predicted probability obtained in the analysis
of Logistic Regression.

• Classification
On the basis of the selected cut‐off point of predicted probability we can change the clas‐
sification quality. By default the cut‐off point has the value of 0.5. The user can change the
value into any value from the range of (0.1), e.g. the value suggested by the ROC curve.

As a result we shall obtain the classification table and the percentage of properly classified
cases, the percentage of properly classified (0) –specificity, and the percentage of properly
classified (1) –sensitivity.

Graphs in logistic regression

• Odds Ratio ± confidence interval – is a graph showing the OR along with the 95 percent
confidence interval for the score of each variable returned in the constructed model. For
categorical variables, the line at level 1 indicates the odds ratio value for the reference ca‐
tegory.
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• Observed Values / Expected Probability – is a graph showing the results of each person’s
predicted probability of an event occurring (X‐axis) and the true value, which is the occur‐
rence of the event (value 1 on the Y‐axis) or the absence of the event (value 0 on the Y‐axis).
If the model predicts very well, points will accumulate at the bottom near the left side of
the graph and at the top near the right side of the graph.

• ROC curve – is a graph constructed based on the value of the dependent variable and the
predicted probability of an event.

• Pearson residuals plot – is a graph that allows you to assess whether there are outliers in
the data. The residuals are the differences between the observed value and the probability
predicted by the model. Plots of raw residuals from logistic regression are difficult to inter‐
pret, so they are unified by determining Pearson residuals. The Pearson residual is the raw
residual divided by the square root of the variance function. The sign (positive or negative)
indicates whether the observed value is higher or lower than the value fitted to the model,
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and the magnitude indicates the degree of deviation. Person’s residuals less than or greater
than 3 suggest that the variance of a given object is too largeu.

• Unit changes in the odds ratio – is a graph showing a series of odds ratios, along with a
confidence interval, determined for each possible cut‐off point of a variable placed on the
X axis. It allows the user to select one good cut‐off point and then build from that a new
bivariate variable at which a high or low odds ratio is achieved, respectively. The chart is
dedicated to the evaluation of continuous variables in univariate analysis, i.e. when only
one independent variable is selected.

• odds ratio profile is a graph presenting series of odds ratios with confidence interval, de‐
termined for a given window size, i.e. comparing frequencies inside the window with fre‐
quencies placed outside the window. It enables the user to choose several categories into
which he wants to divide the examined variable and adopt the most advantageous referen‐
ce category. It works best when we are looking for a U‐shaped function i.e. high risk at low
and at high values of the variable under study and low risk at average values. There is no
one window size that is good for every analysis, the window size must be determined indi‐
vidually for each variable. The size of the window indicates the number of unique values of
variable X contained in the window. The wider the window, the greater the generalizability
of the results and the smoother the odds ratio function. The narrower the window, the mo‐
re detailed the results, resulting in a more lopsided odds ratio function. A curve is added to
the graph showing the smoothed (Lowess method) odds ratio value. Setting the smoothing
factor close to 0 results in a curve closely fitting to the odds ratio, whereas setting the smo‐
othing factor closer to 1 results in more generalized odds ratio, i.e. smoother and less fitting
to the odds ratio curve. The graph is dedicated to the evaluation of continuous variables in
univariate analysis, i.e. when only one independent variable is selected.

EXAMPLE 24.3. (OR profiles.pqs file)
We examine the risk of disease A and disease B as a function of the patient’s BMI. Since BMI is a
continuous variable, its inclusion in the model results in a unit odds ratio that determines a linear
trend of increasing or decreasing risk. We do not know whether a linear model will be a good
model for the analysis of this risk, so before building multivariate logistic regression models, we
will build some univariatemodels presenting this variable in graphs to be able to assess the shape
of the relationship under study and, based on this, decide howwe should prepare the variable for
analysis. For this purpose, we will use plots of unit changes in odds ratio and odds ratio profiles,
and for the profiles we will choose a window size of 100 because almost every patient has a
different BMI, so about 100 patients will be in each window.
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• Disease A
Unit changes in the odds ratio show that when the BMI cut‐off point is chosen somewhere
between 27 and 37, we get a statistically significant and positive odds ratio showing that
people with a BMI above this value have a significantly higher risk of disease than people
below this value.

The odds ratio profiles show that the red curve is still close to 1, only the top of the curve is
slightly higher, indicating that it may be difficult to divide BMI into more than 2 categories
and select a good reference category, i.e., one that yields significant odds ratios.

In summary, one can use a split of BMI into two values (e.g., relate those with a BMI above
30 to those with a BMI below that, in which case OR[95%CI]=[1.41, 4.90], p=0.0024) or stay
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with the unit odds ratio, indicating a constant increase in disease risk with an increase in
BMI of one unit (OR[95%CI]=1.07[1.02, 1.13], p=0.0052).

• Disease B
Unit changes in the odds ratio show that when the BMI cut‐off point is chosen somewhere
between 22 and 35, we get a statistically significant and positive odds ratio showing that
people with a BMI above this value have a significantly higher risk of disease than those
below this value.

The odds ratio profiles show that it would be much better to divide BMI into 2 or 4 catego‐
ries. With the reference category being the one that includes a BMI somewhere between
19 and 25, as this is the category that is lowest and is far removed from the results for BMIs
to the left and right of this range. We see a distinct U‐like shape, meaning that disease risk
is high at low BMI and at high BMI.
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In summary, although the relationship for the unit odds ratio, or linear relationship, is stati‐
stically significant, it is not worth building such a model. It is much better to divide BMI into
categories. The division that best shows the shape of this relationship is the one using two or
three BMI categories, where the reference valuewill be the average BMI. Using the standard
division of BMI and establishing a reference category of BMI in the normal range will result
in a more than 15 times higher risk for underweight people (OR[95%CI]=15.14[6.93, 33.10])
more than 10 times for overweight people (OR[95%CI]=10.35[6.74, 15.90]) and more than
twelve times for people with obesity (OR[95%CI]=12.22[6.94, 21.49]).

In the odds ratio plot, the BMI norm is indicated at level 1, as the reference category. We
have drawn lines connecting the obtained ORs and also the norm, so as to show that the
obtained shape of the relationship is the same as that determined previously by the odds
ratio profile.

24.4.3 Examples for logistic regression

EXAMPLE 24.4. ( anomaly.pqs file)
Studies have been conducted for the purpose of identifying the risk factors for a certain rare congenital
anomaly in children. 395 mothers of children with that anomaly and 375 of healthy children have par‐
ticipated in that study. The gathered data are: address of residence, child’s sex, child’s weight at birth,
mother’s age, number of pregnancy, previous spontaneous abortions, respiratory tract infections, smo‐
king, mother’s education.

We construct a logistic regression model to check which variables may have a significant influence
on the occurrence of the anomaly. The dependent variable is the column GROUP, the distinguished
values in that variable as 1 are the ”cases”, that are mothers of children with anomaly. The following 9
variables are independent variables:

AddressOfRes (2=city/1=village),
Sex (1=male/0=female),
BirthWeight (in kilograms, with an accuracy of 0.5 kg),
MAge (in years),
PregNo (which pregnancy is the child from),
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SponAbort (1=yes/0=no),
RespTInf (1=yes/0=no),
Smoking (1=yes/0=no),
MEdu (1=primary or lower/2=vocational/3=secondary/4=tertiary).

Copyright ©2010‐2023 PQStat Software – All rights reserved 407



24 MATCHING GROUPS

The quality of model goodness of fit is not high (R2
Pseudo = 0.11, R2

Nagelkerke = 0.19 i R2
Cox−Snell =

0.14). At the same time the model is statistically significant (value p < 0.000001 of the Likelihood Ratio
test), which means that a part of the independent variables in the model is statistically significant. The
result of the Hosmer‐Lemeshow test points to a lack of significance (p = 0.2753). However, in the case
of the Hosmer‐Lemeshow test we ought to remember that a lack of significance is desired as it indicates
a similarity of the observed sizes and of predicted probability.

An interpretation of particular variables in themodel starts from checking their significance. In this case
the variables which are significantly related to the occurrence of the anomaly are:

Sex: p = 0.0063,
BirthWeight: p = 0.0188,
PregNo: p = 0.0035,
RespTInf: p < 0.000001,
Smoking: p = 0.0003.

The studied congenital anomaly is a rare anomaly but the odds of its occurrence depend on the variables
listed above in the manner described by the odds ratio:

• variable Sex: OR[95%CI] = 1.60[1.14; 2.22] –the odds of the occurrence of the anomaly in a
boy is 1.6 times greater than in a girl;

• variable BirthWeight: OR[95%CI] = 0.74[0.57; 0.95] –the higher the birth weight the smaller
the odds of the occurrence of the anomaly in a child;

• variable PregNo:OR[95%CI] = 1.34[1.10; 1.63] –the odds of the occurrence of the anomaly in
a child is 1.34 times greater with each subsequent pregnancy;

• variable RespTInf:OR[95%CI] = 4.46[2.59; 7.69] –the odds of the occurrence of the anomaly in
a child if the mother had a respiratory tract infection during the pregnancy is 4.46 times greater
than in a mother who did not have such an infection during the pregnancy;

• variable Smoking:OR[95%CI] = 4.44[1.98; 9.96] –a mother who smokes when pregnant incre‐
ases the risk of the occurrence of the anomaly in her child 4.44 times.

In the case of statistically insignificant variables the confidence interval for the Odds Ratio contains 1
whichmeans that the variables neither increase nor decrease the odds of the occurrence of the studied
anomaly. Therefore, we cannot interpret the obtained ratio in a manner similar to the case of statisti‐
cally significant variables.

The influence of particular independent variables on the occurrence of the anomaly can also be descri‐
bed with the help of a chart concerning the odds ratio:
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EXAMPLE 24.4 continued (anomaly.pqs file)
Let us once more construct a logistic regression model, however, this time let us divide the variable
mother’s education into dummy variables (with dummy coding). With this operation we lose the infor‐
mation about the ordering of the category of education but we gain the possibility of a more in‐depth
analysis of particular categories. The breakdown into dummy variables is done by selectingDummy var.
in the analysis window.:

The primary education variable is missing as it will constitute the reference category.
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As a result the variables which describe education become statistically significant. The goodness of fit of
the model does not change much but the manner of interpretation of the the odds ratio for education
does change:
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Variable OR[95%CI]

Primary education reference category
Vocational education 0.51[0.26; 0.99]
Secondary education 0.42[0.22; 0.80]
Tertiary education 0.45[0.22; 0.92]

The odds of the occurrence of the studied anomaly in each education category is always compared with
the odds of the occurrence of the anomaly in the case of primary education. We can see that for more
educated the mother, the odds is lower. For a mother with:

• vocational education the odds of the occurrence of the anomaly in a child is 0.51 of the odds for
a mother with primary education;

• secondary education the odds of the occurrence of the anomaly in a child is 0.42 of the odds for
a mother with primary education;

• tertiary education the odds of the occurrence of the anomaly in a child is 0.45 of the odds for a
mother with primary education;

EXAMPLE 24.5. (task.pqs file)
An experiment has been made with the purpose of studying the ability to concentrate of a group of
adults in an uncomfortable situation. 130 people have taken part in the experiment. Each person was
assigned a certain task the completion of which requried concentration. During the experiment some
people were subject to a disturbing agent in the form of temperature increase to 32 degrees Celsius.
The participants were also asked about their address of residence, sex, age, and education. The time
for the completion of the task was limited to 45 minutes. In the case of participants who completed the
task before the deadline, the actual time devoted to the completion of the task was recorded.
Variable SOLUTION (yes/no) contains the result of the experiment, i.e. the information about whether
the task was solved correctly or not. The remaining variables which could have influenced the result of
the experiment are:

ADDRESSOFRES (1=city/0=village),
SEX (1=female/0=male),
AGE (in years),
EDUCATION (1=primary, 2=vocational, 3=secondary, 4=tertiary),
TIME needed for the completion of the task (in minutes),
DISTURBANCES (1=yes/0=no).

On the basis of all those variables a logistic regression model was built in which the distinguished state
of the variable SOLUTION was set to ”yes”.

Copyright ©2010‐2023 PQStat Software – All rights reserved 411



24 MATCHING GROUPS

The adequacy quality is describedby the coefficients:R2
Pseudo = 0.27,R2

Nagelkerke = 0.41 iR2
Cox−Snell =

0.30. The sufficient adequacy is also indicated by the result of the Hosmer‐Lemeshow test (p = 0.1725).
The whole model is statistically significant, which is indicated by the result of the Likelihood Ratio test
(p < 0.000001).
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The observed values and predicted probability can be observed on the chart:

In the model the variables which have a significant influence on the result are:

AGE: p = 0.0014,
TIME: p = 0.0012,
DISTURBANCES: p = 0.0001.

What is more, the younger the person who solves the task the shorter the time needed for the com‐
pletion of the task, and if there is no disturbing agent, the probability of correct solution is greater:

AGE:OR[95%CI] = 0.90[0.85; 0.96],
TIME:OR[95%CI] = 0.91[0.87; 0.97],
DISTURBANCES:OR[95%CI] = 0.15[0.06; 0.37].

The obtained results of the Odds Ratio are presented on the chart below:
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Should the model be used for prediction, one should pay attention to the quality of classification. For
that purpose we calculate the ROC curves.
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The result seems satisfactory. The area under the curve isAUC = 0.83 and is statistically greater than
0.5 (p < 0.0001), so classification is possible on the basis of the constructed model. The suggested cut‐
off point for the ROC curve is 0.6949 and is slightly higher than the standard level used in regression,
i.e. 0.5. The classification determined from this cut‐off point yields 79.23% of cases classified correctly,
of which correctly classified ”yes” values are 72.73% (sensitivity), ”no” values are 88.68% (specificity).
The classification derived from the standard value yields no less, 73.85% of cases classified correctly,
but it will yield more correctly classified ”yes” values are 83.12%, although less correctly classified ”no”
values are 60.38%.

We can finish the analysis of classification at this stage or, if the result is not satisfactory, we can make
a more detailed analysis of the ROC curve in module ROC curve.

As we have assumed that classification on the basis of that model is satisfactory we can calculate the
predicted value of a dependent variable for any conditions. Let us check what odds of solving the task
has a person whose:

ADDRESSOFRES (1=city),
SEX (1=female),
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AGE (50 years),
EDUCATION (1=primary),
TIME needed for the completion of the task (20 minutes),
DISTURBANCES (1=yes).

For that purpose, on the basis of the value of coefficient b, we calculate the predicted probability (pro‐
bability of receiving the answer ”yes” on condition of defining the values of dependent variables):

P (Y = yes|ADDRESSOFRES, SEX,AGE,EDUCATION, TIME,DISTURBANCES) =

= e7.23−0.45ADDRESSOFRES−0.45SEX−0.1AGE+0.46EDUCATION−0.09TIME−1.92DISTURBANCES
1+e7.23−0.45ADDRESSOFRES−0.45SEX−0.1AGE+0.46EDUCATION−0.09TIME−1.92DISTURBANCES =

= e7.231−0.453·1−0.455·1−0.101·50+0.456·1−0.089·20−1.924·1

1+e7.231−0.453·1−0.455·1−0.101·50+0.456·1−0.089·20−1.924·1

As a result of the calculation the program will return the result:

The obtained probability of solving the task is equal to 0.1215, so, on the basis of the cut‐off 0.60, the
predicted result is 0 –which means the task was not solved correctly.
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24.4.4 Model‐based prediction and test set validation
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24.5 COMPARISON OF LOGISTIC REGRESSION MODELS

Thewindowwith settings formodel comparison is accessed via themenuAdvanced Statistics→Multivariate
models→Logistic regression – comparing models

Due to the possibility of simultaneous analysis of many independent variables in one logistic regression
model, similarly to the case of multiple linear regression, there is a problem of selection of an optimum
model. When choosing independent variables one has to remember to put into the model variables
strongly correlated with the dependent variable and weakly correlated with one another.

When comparing models with different numbers of independent variables, we pay attention to model
fit and information criteria. For each model we also calculate the maximum of the credibility function,
which we then compare using the credibility quotient test.

Hypotheses:

H0 : LFM = LRM ,
H1 : LFM ̸= LRM ,

where:
LFM , LRM – the maximum of likelihood function in compared models (full and reduced).

The test statistic has the form presented below:

χ2 = −2 ln(LRM/LFM ) = −2 ln(LRM )− (−2 ln(LFM ))

The statistic asymptotically (for large sizes) has the χ2 distribution with df = kFM − kRM degrees of
freedom, where kFM i kRM is the number of estimated parameters in compared models.

On the basis of test statistics, p value is estimated and then compared with α :
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if p ≤ α =⇒ we rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

We make the decision about which model to choose on the basis of the size R2
Pseudo, R2

Nagelkerke,
R2

Cox−Snell and the result of the Likelihood Ratio test which compares the subsequently created (ne‐
ighboring) models. If the compared models do not differ significantly, we should select the one with a
smaller number of variables. This is because a lack of a difference means that the variables present in
the full model but absent in the reduced model do not carry significant information. However, if the
difference is statistically significant, it means that one of them (the one with the greater number of
variables, with a greater R2 and a lower information criterion value of AIC, AICc or BIC) is significantly
better than the other one.

Comparison the predictive value of models.
The regression models that are built allow to predict the probability of occurrence of the studied event
based on the analyzed independent variables. When many variables (factors) that increase the risk of
an event are already known, then an important criterion for a new candidate risk factor is the improve‐
ment in prediction performance when that factor is added to themodel. To establish the point, let’s use
an example. Suppose we are studying risk factors for coronary heart disease. Known risk factors for this
disease include age, systolic and diastolic blood pressure values, obesity, cholesterol, or smoking. Ho‐
wever, the researchers are interested in how much the inclusion of individual factors in the regression
model will significantly improve disease risk estimates. Risk factors added to a model will have predicti‐
ve value if the new and larger model (which includes these factors) shows better predictive value than
a model without them. The predictive value of the model is derived from the determined value of the
predicted probability of an event, in this case coronary artery disease. This value is determined from
the model for each individual tested. The closer the predicted probability is to 1, the more likely the
disease is. Based on the predicted probability, the value of the AUC area under the ROC curve can be
determined and compared between different models, as well as theNRI and IDI coefficient.

Change of the area under the ROC curve
The ROC curve in logistic regressionmodels is constructed based on the classification of cases into
a group experiencing an event or not, and the predicted probability of the dependent variable
P . The larger the area under the curve, the more accurately the probability determined by the
model predicts the actual occurrence of the event. If we are comparing models built on the basis
of a larger or smaller number of predictors, then by comparing the size of the area under the
curve we can check whether the addition of factors has significantly improved the prediction of
the model.
Hypotheses:

H0 : AUCFM = AUCRM ,
H1 : AUCFM ̸= AUCRM .

For a method of determining the test statistic based on DeLong’s method, check out Comparing
ROC curves.

The p value, designated on the basis of the test statistic, is compared with the significance level
α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

Net reclassification improvement
This measure is denoted by the acronym NRI The NRI focuses on the reclassification table
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describing the upward or downward shift in probability values when a new factor is added to
the model. It is determined based on two separate factors, i.e., a factor determined separately
for subjects experiencing the event (1) and separately for those not experiencing the event (0).
The NRI can be determined with a given division of the predicted probability into categories
(categoricalNRI) or without the need to determine the categories (continuousNRI).

• NRI categorical requires an arbitrary determination of the division of probability values
predicted from the model. There can be a maximum of 9 split points given, and thus a ma‐
ximum of 10 predicted categories. However, one or two split points are most commonly
used. At the same time, it should be noted that the values of the categorical NRI can be
compared with each other only if they were based on the same split points. To illustrate the
situation, let’s establish two example probability split points: 0.1 and 0.3. If a test person
in the ”old” (smaller) model received a probability below 0.1, and in the ”new model” (in‐
creased by a new potential risk factor) probability located between 0.1 and 0.3, it means
that the person was reclassified upwards (table, situation 1). If the probability values from
both models are in the same range, then the person is not reclassified (table, situation 2),
whereas if the probability from the ”new” model is lower than that from the ”old” model,
then the person is reclassified downwards (table, situation 3).

regression models situation 1 situation 2 situation 3
predicted probability ”old” ”new” ”old” ”new” ”old” ”new”

[0.3 do 1] ⊕
[0.1; 0.3) ⊕ ⊕ ⊕ ⊕
[0; 0.1) ⊕

• NRI continuous does not require an arbitrary designation of categories, since any, even
the smallest, change in probability up or down from the probability designated in the ”old
model” is treated as a transition to the next category. Thus, there are infinitely many cate‐
gories, just as there are many possible changes.

Note
Use of continuousNRI does not require arbitrary definition of probability split points, but even
small changes in risk (not reflected in clinical observations) can increase or decrease this ratio.
The categoricalNRI factor allows only changes that are important to the investigator to reflect
changes that involve exceeding preset event risk values (predicted probability values).

To determineNRI we define:
p̂up,events =

#eventsup
#events

p̂down,events =
#eventsdown

#events

p̂up,nonevents =
#noneventsup
#nonevents

p̂down,nonevents =
#noneventsdown

#nonevents

where:
#eventsup – the number of subjects in the group experiencing the event for whom
there was an upward change of at least one category in the predicted probability,
#eventsdown – the number of subjects in the group experiencing the event for whom
there was at least one downward change in predicted probability,
#events – number of objects in the group experiencing the event,
#noneventsup – The number of subjects in the group not experiencing the event for
whom there was an upward change of at least one category in the predicted probabi‐
lity,
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#noneventsdown – The number of subjects in the group not experiencing the event
for whom there was at least one downward change in predicted probability,
#nonevents – number of objects in the group not experiencing the event.

The overall NRI and coefficients expressing the percentage change in classification are deter‐
mined from the formula:

NRI = (p̂up,events − p̂down,events)− (p̂up,nonevents − p̂down,nonevents)

NRIevents = p̂up,events − p̂down,events, NRInonevents = p̂down,nonevents − p̂up,nonevents,

The NRIevents coefficient can be interpreted as the net percentage of correctly reclassified in‐
dividuals with an event, andNRInonevents as the net percentage of correctly reclassified indivi‐
duals without an event. The overall coefficient NRI is expressed as the sum of the coefficients
NRIevents andNRInonevents making it a coefficient implicitly weighted by event frequency and
cannot be interpreted as a percentage.

TheNRIevents coefficientsbelong to the range from‐1 to 1 (from ‐100% to 100%), and the overall
coefficients of NRI belong to the range from ‐2 to 2. Positive values of the coefficients indica‐
te favorable reclassification, and negative values indicate unfavorable reclassification due to the
addition of a new variable to the model.

Z test for significance ofNRI coefficient
Using this test, we examine whether the change in classification expressed by the NRI coeffi‐
cient was significant.
Hypotheses:

H0 : NRI = 0,
H1 : NRI ̸= 0.

The test statistic has the form:
Z =

NRI

SE(NRI)

where:

SE(NRI) = [
(
#eventsup+#eventsdown

#events2 − (#eventsup+#eventsdown)
2

#events3

)
+

+
(
#noneventsdown+#noneventsup

#nonevents2 − (#noneventsdown+#noneventsup)2
#nonevents3

)
]1/2

The Z statistic asymptotically (for large sample sizes) has the normal distribution.

The p value, designated on the basis of the test statistic, is compared with the significance level
α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

Integrated Discrimination Improvement
This measure is denoted by the abbreviation IDI . The IDI coefficients indicate the differen‐
ce between the value of the average change in the predicted probability between the group of
objects experiencing the event and the group of objects that did not experience the event.

IDI = p(diff)events − p(diff)nonevents
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where:
p(diff)events – The mean of the difference in predicted probability values between
the regression models (”old” and ”new”) for objects that experienced the event,
p(diff)nonevents – Themeanof the difference in predicted probability values between
the regressionmodels (”old” and ”new”) for objects that did not experience the event.

Z test for significance of IDI coefficient
Using this test, we examine whether the difference between the value of the mean change in
predicted probability between the group of subjects experiencing the event and the subjects not
experiencing the event, as expressed by the IDI coefficient, was significant.
Hypotheses:

H0 : IDI = 0,
H1 : IDI ̸= 0.

The test statistic is of the form:
Z =

IDI

SE(IDI)

where:
SE(IDI) =

√
sd(diff)2events

#events +
sd(diff)2nonevents

#nonevents

The Z statistic asymptotically (for large sample sizes) has the normal distribution.

The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

In the program PQStat the comparison of models can be done manually or automatically.

• Manualmodel comparison – construction of 2 models:

– a full model – a model with a greater number of variables,
– a reduced model – a model with a smaller number of variables – such a model is created

from the full model by removing those variableswhich are superfluous from the perspective
of studying a given phenomenon.

The choice of independent variables in the compared models and, subsequently, the choice of a
better model on the basis of the results of the comparison, is made by the researcher.

• Automaticmodel comparison is done in several steps:

step 1 Constructing the model with the use of all variables.
step 2 Removing one variable from the model. The removed variable is the one which,

from the statistical point of view, contributes the least information to the current
model.

step 3 A comparison of the full and the reduced model.
step 4 Removing another variable from the model. The removed variable is the one

which, from the statistical point of view, contributes the least information to the
current model.

step 5 A comparison of the previous and the newly reduced model.
...
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In that way numerous, ever smaller models are created. The last model only contains 1 indepen‐
dent variable.

EXAMPLE 24.5 c.d. (task.pqs file)
In the experimentmadewith the purpose to study, for 130 people of the teaching set, the concentration
abilities a logistic regression model was constructed on the basis of the following variables:

dependent variable: SOLUTION (yes/no) ‐ information aboutwhether the taskwas correctly
solved or not;
independent variables:
ADDRESSOFRES (1=city/0=village),
SEX (1=female/0=male),
AGE (in years),
EDUCATION (1=primary, 2=vocational, 3=secondary, 4=tertiary),
TIME needed for the completion of the task (in minutes),
DISTURBANCES (1=yes/0=no).

Let us check if all independent variables are indispensible in the model.

• Manualmodel comparison.
On the basis of the previously constructed full model we can suspect that the variables: ADDRES‐
SOFRES and SEX have little influence on the constructed model (i.e. we cannot successfully make
classifications on the basis of those variables). Let us check if, from the statistical point of view,
the full model is better than the model from which the two variables have been removed.
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The results of the Likelihood Ratio test (p = 0.3051) indicates that there is no basis for believing
that a full model is better than a reduced one. Therefore, with a slight worsening of model ade‐
quacy, the address of residence and the sex can be omitted.

We can compare the two models in terms of classification ability by comparing the ROC curves
for these models, NRI and IDI value. To do so, we select the appropriate option in the analysis
window. The resulting report, like the previous one, indicates that the models do not differ in
prediction quality i.e. the p‐values for the comparison of ROC curves and for the evaluation of
NRI and IDI indices are statistically insignificant. We therefore decide to omit gender and place of
residence from the final model.
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• Automaticmodel comparison.
For automatic model comparison, we obtained very similar results. The best model is the model
built on the independent variables: AGE, EDUCATION, TIME OF SOLUTION, and DISTURBANCES.

Based on the above analyses, from a statistical point of view, the optimal model is one containing the
4 most important independent variables: AGE, EDUCATION, RESOLUTION TIME, and DISTURBANCES.
Its detailed analysis can be done in the Logistic Regression module. However, the final decision which
model to choose is up to the experimenter.
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EXAMPLE 24.6. Example(Heart.pqs file)
Risk factors for certain heart disease such as age, bmi, smoking, LDL fraction cholesterol, HDL fraction
cholesterol, and hypertension were examined. From the researcher’s point of view, it was interesting
to determine how much information about smoking could improve the prediction of the occurrence of
the disease under study.
We compare a logistic regression model describing the risk of heart disease based on all study variables
with a model without smoking information. In the analysis window, we select the options related to
the prediction evaluation, namely the ROC curve and the NRI coefficients. In addition, we indicate to
include all proposed graphs in the report.

Analysis of the report indicates important differences in prediction as a result of adding smoking infor‐
mation to the model, although they are not significant in describing the ROC curve (p=0.057).
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The continuous IDI and NRI coefficient values indicate a statistically significant and favorable change
(the values of these coefficients are positive with p<0.05). The prognosis for those with heart dise‐
ase improved by more than 5% and those without heart disease by more than 13% (NRI(sick)=0.0522,
NRI(healthy)=0.1333)) as a result of including information about smoking.

We also see the conclusions drawn from theNRI in the graph.We see an increase in themodel‐predicted
probability of disease in diseased individuals (more individuals were reclassified upward than down‐
ward 52.61It is also possible to determine a categorical NRI, but to do so, one would first need to de‐
termine the model‐determined probability cut‐off points accepted in the heart disease literature.
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24.6 FACTORIAL ANOVA ‐ GLM

The settingswindowwith theGLM factorial ANOVA canbeopened inAdvanced statisticsmenu→Multivariate
models→Factorial GLM ANOVA.

Factor analysis of variance GLM is an extension of univariate analysis of variance (ANOVA) for indepen‐
dent groups and linear multiple regression. The acronym GLM (general linear model) reads as General
Linear Model. GLM analysis typically involves the use of linear regression models in the calculation of
various composite ANOVA comparisons.

Example
Example of equivalent analyses that can be performed through GLM. The analyses in each row of the
table are equivalent in the sense that their results are the same, although they need not be identical.
The study is about the income of a certain group of people. About the surveyed people we have some
additional information like gender and education..
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income and... ANOVA Multiple regression
t‐test for independent groups gender (X) dependence of income (Y )

gender ⋆ comparing income for women with income for men ⋆ gender as a column with two categories
One‐way ANOVA education (X) dependence of income (Y )

education ⋆ income comparison for individuals with different education ⋆ education broken down into dummy variables
(primary, vocational, secondary, higher)
Multifactorial ANOVA gender (X1) and education (X2)

gender, ⋆ comparing income for women with income for men dependence of income (Y )
with education as a confounding variable ⋆ gender as a column with two categories

education ⋆ income comparison for people with different education ⋆ education broken down into dummy variables
(primary, vocational, secondary, higher)
with gender as a confounding variable both variables are mutually confusing
Multifactorial ANOVA gender (X1), education (X2),

gender, ⋆ comparing women’s income with men’s income interaction of gender and education (X1 ∗X2)
taking into account other variables in the model dependence of income (Y )

education, ⋆ income comparison for people with different education ⋆ gender as a column with two categories
(primary, vocational, secondary, higher) ⋆ education broken down into dummy variables
taking into account other variables in the model ⋆ interaction is the product of gender and education

gender*education ⋆ income comparison for people with different
education and gender (in interaction) variables in the model are mutually confusing
taking into account other variables in the model

GLM analysis can be used in any of the above cases; however, because multivariate regression analysis
as well as one‐way ANOVA have been discussed in separate chapters, in this section we will present the
use of GLM in multifactorial ANOVA.

Factorial ANOVA is a kind of analysis of variance, in which we can use both one and many factors to
separate compared groups. Variables that are interactions of the indicated factors may also be involved
in the analysis. When ANOVA includes more than one factor, the factors are entangled with each other.

Influence of confounding factors
Although all factors involved in the analysis are confounded with each other, their influence on the si‐
gnificance of individual factors can be controlled. There are three ways by which the influence of the
entangling variables can be taken into account when examining the significance of individual factors.
They depend on how the sum of squares is determined:

• Type I sums of squares
Type I sums of squares depend on the order in which the factors are placed in the model. This
type of sum of squares means that the significance of the factor that we interpret is adjusted
by those variables whose order in the model was earlier, the other variables in the model only
indirectly affect the result of the analysis. For example: if we place factors in the model in the
order indicated: A, B, A ∗ B, C, A ∗ C, B ∗ C, A ∗ B ∗ C, D, then the significance for factor
A ∗ C takes into account the whole model (through sums of squares for error) but only factors
are used explicitly as confounding variables: A,B, A ∗B, C.
The sums of squares for the factor A ∗ C are then calculated as follows:

SS(A ∗ C) = SS(A,B,A ∗B,C,A ∗ C,B ∗ C,A ∗B ∗ C,D)− SS(A,B,A ∗B,C)

Using the sum of squares type I

Indications: When the study is fully balanced, with equal or proportional counts of
each category, including when there are interactions.
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Contraindications:When the study is unbalanced (different counts of each category)
and/or there are interactions.

• Type II sums of squares
This type of sum of squares means that the significance of the factor we interpret is corrected for
those variables whose order is the same or lower, the other variables in the model only indirectly
affect the result of the analysis. For example: if we include factors in the model: A,B,A ∗B, C,
A ∗ C, B ∗ C, A ∗ B ∗ C, D, then the significance for the factor A ∗ C takes into account the
whole model (via sums of squares for the error) but the first order variables are used explicitly as
confounding variables: A,B, C,D and all other second order variables: A ∗B,B ∗ C.
The sums of squares for the factor A ∗ C are then calculated as follows:

SS(A ∗C) = SS(A,B,A ∗B,C,A ∗C,B ∗C,A ∗B ∗C,D)−SS(A,B,A ∗B,C,B ∗C,D)

Using the sum of squares type II

Indications: When the study is fully balanced, with equal or proportional counts of
each category, including when there are interactions.
Contraindications:When the study is unbalanced (different counts of each category)
and/or there are interactions.

• Type III sums of squares
We recommend using this type of coding when effect coding is selected.
This type of sum of squares causes the significance of the factor we interpret to be adjusted for
all other variables in the model. For example: if we include factors in the model:A,B,A ∗B, C,
A ∗ C, B ∗ C, A ∗B ∗ C,D, then the significance for the variable A ∗ C takes into account the
entire model (via sums of squares for error) and all factors except the one under study are used
explicitly as the confounding variables: A,B, A ∗B, C,B ∗ C, A ∗B ∗ C,D.
The sums of squares for the factor A ∗ C are then calculated as follows:

SS(A∗C) = SS(A,B,A∗B,C,A∗C,B∗C,A∗B∗C,D)−SS(A,B,A∗B,C,B∗C,A∗B∗C,D)

Using the sum of squares type III

Indications:When the study is balanced or unbalanced, including when there are in‐
teractions.
Contraindications:When the test contains subclasses with missing observations.

In PQStat, Type III sums of squares are selected by default because of their universality. Also selected by
default is the effect coding option described in the 24.1 section. Note that the choice of the appropriate
coding affects both the interpretation of model coordinates and the significance of individual factors in
a factorial ANOVA ‐ especially with unbalanced systems.

Basic assumptions:

– measurement on an interval scale,

– the samples come from a population with a normal distribution (normality of the variables or
residuals of the model),

– an independent model,

– equality of variances of an analysed variable in all populations.
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A factorial ANOVA requires that the factors be divided into categories (i.e., independent populations),
e.g., factor A: gender is divided into male and female, factor B: education into primary, vocational,
secondary and higher education. The interaction of factor A ∗ B is also divided into categories, in this
case we will get eight categories:
1) female with primary education,
2) female with vocational education,
3) female with secondary education,
4) female with higher education,
5) male with primary education,
6) male with vocational education,
7) male with secondary education,
8) male with higher education,

ANOVA type analysis and regression models are treated equivalently, and in the general case their hy‐
potheses converge. We will present hypotheses for the main effectsA andB and the interaction effect
A ∗B in both of these approaches. In interpreting these hypotheses, it is important to remember that
the hypotheses for the factors in question are corrected for those of the other factors that a given ana‐
lysis includes

ANOVA approach

Hypotheses for the factor A:
H0 : µ1 = µ2 = ... = µa,
H1 : not all µiare equal to each other (i = 1, 2, ..., a),

where:
µ1,µ2,...,µa – averages of the factorA for its individual categories.

Hypotheses for the factorB:
H0 : µ1 = µ2 = ... = µb,
H1 : not all µiare equal to each other (i = 1, 2, ..., a),

where:
µ1,µ2,...,µb – śaverages of the factorB for its individual categories.

Hypotheses for the interaction of factors A ∗B:
H0 : µ1 = µ2 = ... = µab,
H1 : not all µiare equal to each other (i = 1, 2, ..., a),

where:
µ1,µ2,...,µab – the average interaction of the factorsA ∗B for their respective categories.

Regression approach
The model approach assumes that the regression model works

Y = µ+ αiAi + βjBj + (αβ)kBk + ϵ.

where:
Y – dependent variable, explained by the model,
µ – Overall mean of the Y variable (if effect coding was used)
Ai, Bj , ABk – factors ‐ independent, explanatory variables,
αi, βi, αβi, – parameters,
ϵ – random component (model residual).
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Hypotheses for the factor A:

H0 : α1 = α2 = ... = αa = 0,
H1 : not all αi = 0,

Hypotheses for the factorB:

H0 : β1 = β2 = ... = βb = 0,
H1 : not all βj = 0 ,

Hypotheses for the interaction of factors A ∗B:

H0 : (αβ)1 = (αβ)2 = ... = (αβ)ab = 0,
H1 : not all (αβ)k = 0,

Coding
The analysis results obtained (in particular the regression model built) and the interpretation of the
hypotheses also depend on the coding method. The PQStat program offers zdummy coding i effect
coding. For a detailed description of the coding, check the section Preparing variables for analysis in
multivariate models. By default, the program selects effect coding. Unchecking this option is equivalent
to selecting dummy coding.
Note
When using type III sum of squares, when there are interactions, it is advisable to use effect coding.

EXAMPLE 24.7. (yield.pqs file)
In order to increase the yield of crops, fertilizers are being developed according to newer and newer
technologies. Based on an experiment, the researchers want to find out which of the three blends of
new fertilizers is the most effective. The crops were grown by two different farms and involved sowing
wheat, rye, oats and barley. Yield was reported in % (compared to the yield obtained without fertiliza‐
tion).

First, we want to check whether:
1) H0: The average yields obtained when fertilizing with compound X are the same as those obtained
when fertilizing with compound Y and the same as those obtained when fertilizing with compound Z
(regardless of the crop farm).
In addition, although it is of urban interest in this case, we will check whether:
2) H0: The average yields obtained in farm 1 are the same as in farm 2 (regardless of the blend of ferti‐
lizer used).
Equivalently, these hypotheses can be written using a regression approach:
1) H0: The coefficients indicating the change in yield with a change in fertilizer application are zero (re‐
gardless of the farm growing the crop).
2) H0: The coefficient indicating the change in the yield obtained when changing crop farms is zero (re‐
gardless of the fertilizer blend used).

In a second application of GLM, we will check whether:
3) H0: The average yields for each cereal are the same when using different fertilizer applications.

Hypotheses 1) i 2)
ANOVA approach
We will conduct the analysis using the third type of sum of squares and effect coding.
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Weobserve statistically significant differences between the yield obtainedwith different fertilizer blends
(p<0.0001). The fertilizer blend used explains the variation in yield obtained in about 12% as evidenced
by the value of partial Eta‐square. In contrast, the yields obtained did not depend on the farm where
the crop was grown (p=0.6673, partial Eta‐square = 0,1%).

After selecting the observed or expected averages in the Factors Options, indow, we can graphically
represent these differences in graphs showing the average yields when each fertilizer blend is applied.
Exact values of the averages can be read from the table of descriptive statistics.

We can check where the differences are located by using post‐hoc tests. Fisher’s NIR post‐hoc test in‐
dicates that the most favorable results are obtained with the use of blend Z ‐ the yield obtained is on
average 170.7 % of the yield that would be obtained without the use of fertilization. The remaining
blends did not differ statistically significantly in the yield obtained. Since in the model, the farm where
the crops were grown was analysed simultaneously, we can say that the advantage of the Z blend is
independent of the farm where the sowing was done.
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Podejście regresyjne
An analogous interpretation will be obtained using the regression model, although here the interpre‐
tation is somewhat more difficult. The difficulty arises from the need to determine the coding method
and the choice of reference category. Let us first look at the results obtained with dummy coding, which
we can obtain by unselecting the effect coding option. The analysis automatically took alphabetically
the first level as the reference level. For fertilizers, this level was compound X, for farms it was farm 1.

The analysis of the model coefficients resembles the analysis of post‐hoc tests, except that we compare
only to the reference category. So if we compare all the fertilizer blends to blend X we can see that only
using blend Z produced significantly higher results (p< 0.0001). These results are higher by 17.4107
(recall that the means were respectively (153.285714 ‐ for blend X, 170.696429 ‐ for blend Z). When
comparing farms, the matter is simple, because we have only two farms to compare, and the result is
the result of comparing farm 2 with farm 1, which was the reference category. This time the obtained
difference was small (‐1.4643) and not statistically significant (0.6673).
Using effect coding, we also choose a reference category, but themagnitude of the coefficients and their
significance is not related to the chosen reference category but to the overall average yield obtained,
recorded in the model as an intercept (159.2798).

Compared to the overall average, we find quite a few differences: the yield obtained when fertilizing
with blend Y is by 5.4226 lower than the overall average, and with blend Z by 11.4167 higher. Both
differences are statistically significant.
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An indisputable advantage of building a regression model is the possibility of using its formula in pre‐
dicting the yields obtained. The built models are presented as follows:
For dummy coding:
yield = 154.0179 + 0.5714 ·BlendY + 17.4107 ·BlendZ − 1.4643 · Farm2
Dla kodowania efektów:
yield = 159.2798− 5.4226 ·BlendY + 11.4167 ·BlendZ − 0.7321 · Farm2
To be able to use the selected model in forecasting, you need to go to the menu multiple regression -
prediction and make a prediction based on the new data. The preparation of the data depends on how
it is encoded.

Based on all the results obtained, we do not suspect that yield is dependent on the interaction between
the types of fertilizers used and the crop farm. Most often, the presence of an interaction can be seen
in the graph as clearly intersecting lines. Here, the two lines were nearly parallel and close enough to
each other that the difference between farms was not statistically significant. Although intersecting li‐
nes usually indicate the presence of interaction, it should be remembered that when the lines are close
to each other their accidental crossing is very likely and as a result the interactionwill not be statistically
significant. However, to be sure, we will check whether there is an interaction in our case. To do this, we
will select both variables once again in the interactionwindow andmove them to the list of interactions
located on the right side of the window and then repeat the analysis.

The result confirmed our assumption of no significant interaction (p=0.9214). Thus, a simpler model,
i.e. without interaction, is recommended in this case.

Hypothesis 3)
The situation is differentwhenweexamine the yield obtaineddepending on the dose of fertilizer applied
and the type of cereal grown.
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We will perform an analysis that considers interactions in addition to main effects.

Since the interactions in the built model are statistically significant (p=0.0031), it is the model with inte‐
ractions that we should use and the description of the obtained results should focus on this interaction.:
H0: The average yields obtained when fertilizing wheat with blend X are the same as when fertilizing
wheat with blend Y and the same as when fertilizing wheat with blend Z and the same as when fertili‐
zing rye with blend X and the same as when fertilizing rye with blend Y and the same as when fertilizing
rye with blend Z and the same as fertilizing oats with blend X and the same as fertilizing oats with blend
Y and the same as fertilizing oats with blend Z and the same as fertilizing barley with blend X and the
same as fertilizing barley with blend Y and the same as fertilizing barley with blend Z.
In the regression approach we will say that:
H0: he coefficients that determine the change in yield obtained with a change in fertilizer applied and
a change in crop type are zero.
On the basis of the graph (and the averages in the table) we can see that by far the best yields are
obtained with the Z blend, irrespective of the type of cereal grown.

Copyright ©2010‐2023 PQStat Software – All rights reserved 437



24 MATCHING GROUPS

In contrast, blend X and blend Y yield worse than blend Z and, in addition, there is an interaction effect
between them. It manifests itself in the fact that a wheat crop yields abnormally high when blend X is
applied compared to thewheat yield obtainedwhenblend Y is applied,while a barley andoat crop yields
better when blend Y is applied. We can check the differences obtained more precisely by performing
post‐hoc tests. An excerpt from this report is given below:

The result of Fisher’s post‐hoc test is extensive and confirms the large and statistically significant yield
advantage obtained when using blend Z for any crop and blend Y for wheat crop.

We can use the coefficients of the he regression model for prediction via the multiple regression - pre-
diction menu remembering to code the new data appropriately depending on the model selected..

VERIFICATION OF ASSUMPTIONS
Checking the main assumptions will involve comparing the variances and visually determining the nor‐
mality of the model residuals.
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The normality plot of the residuals (Q‐Q plot) for the first and for the second analysis shows the residuals
of the model well distributed around a straight line, indicating a good fit of the residuals to the normal
distribution. The comparison of variances is performed by the Levenea or Brown‐Forsythe test. For
these tests, we can assume that the results obtained are inconclusive and are on the borderline of
equality of variances.
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24.7 ANCOVA

Analysis of covariance (ANCOVA) is a method of testing the hypothesis that the means of two or more
populations are equal, in correction for other continuous variables. These adjustments result in effects
more readily seen by researchers than those obtained through ANOVA, i.e., narrower confidence inte‐
rvals and greater statistical power.
Suppose an experiment is conducted to evaluate the effects of two treatments. The groups randomly
assigned to treatment differ slightly in mean age, which also affects the treatment effect. Differences
between groups in achievement will be quite ambiguous to interpret, since the groups differ in both
age and treatment conditions. Analysis of covariance will provide ”adjusted averages”, which estimate
what the mean scores would be if the groups were exactly the same in terms of age. At the same time,
the within‐group variability of the results due to the variable (age) will be removed from the error va‐
riability to increase the precision of the test of the differences between the adjusted averages.

The label ”analysis of covariance” is now seen as anachronistic by some research methodologists and
statisticians, since this analysis is not a separate analysis but a variant of the general linearmodel (GLM).
However, the term is still useful because it immediately conveys to most researchers the notion that a
categorical variable (e.g., treatment conditions) and a continuous variable (e.g., age) are involved in a
single analysis that determines treatment outcome.

The settings window with the ANCOVA can be opened in Advanced statistics→Multivariate mo-
dels→ANCOVA

Note!!!
How to take into account the study factors and confounding variables is described in the section on
multivariate ANOVA (Influence of confounding factors). The recommended way is to choose Sum of
Squares type III and effects coding.
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Basic application conditions:

‐ measurement on an interval scale,

‐ the samples come from a population with a normal distribution (normality of the variables or
residuals of the model),

‐ an independent model,

‐ equality of variances of an analysed variable in all populations,

‐ Equality of the slopes of the regression lines (regression coefficients between each confounding
variable and the dependent variable) for each possible factor level.
Note!
Equality of the slopes of the regression lines is tested using the F test comparing the model con‐
taining the analyzed factors with the same model, but augmented by interactions with the con‐
founding factors. A statistically significant result means that the assumption of equal slopes is
violated, because the interaction becomes significant, so the different slopes of the simple.

ANCOVA hypotheses for a single factor A:

H0 : µ1 = µ2 = ... = µa,
H1 : not all µi are equal (i = 1, 2, ..., a),

where:
µ1,µ2,...,µa ‐ expected averages of the factorA for each of its categories.

ANCOVA hypotheses for factor interactions A ∗B:

H0 : µ1 = µ2 = ... = µab,
H1 : not all µk are equal (k = 1, 2, ..., ab),

where:
µ1,µ2,...,µab ‐ expected average interactions ofA∗B factors for their respective categories.

EXAMPLE 24.8. (drug cholesterol.pqs file)
Imagine that a researcher was conducting a study on a new cholesterol‐lowering drug. The study was
designed so that the dose of the drug occurred at three levels:
high, low and placebo. The researcher tested (using ANOVA independent) whether cholesterol after
treatment differed according to the dose of the drug.
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Unfortunately, the researcher did not get confirmation of the differences between the results.
Let’s imagine that the researcher, realized that whether a drug would change cholesterol levels might
be related to the patient’s baseline cholesterol level and age. Therefore, he decided to perform a univa‐
riate ANCOVA (the factor is the dose of the drug) taking into account pre‐treatment cholesterol levels
and age as co‐variables.
This time, the ANOCVA result indicated that there were significant differences between cholesterol le‐
vels after different doses of the drug (p=0.00003):

Including pre‐test cholesterol levels reduced the obtained errors for the averages and narrowed the
confidence intervals. To display the observed or expected averages, I choose the appropriate settings
via Factor Options, to which I select the error graph. The first graph shows the observed averages with
confidence interval, i.e., not including the effect of age and pre‐treatment cholesterol levels; the second
graph is the expected averages based on the built model with confidence intervals, i.e., after accounting
for the effect of these two co‐variables:
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As a result, by taking into account the cholesterol level before treatment, the researcher was able to de‐
monstrate the effectiveness of the new treatment. Cholesterol levels before treatment and age explain
to some extent the changes in cholesterol levels after treatment, but we can attribute the rest of the
changes in 57% to the drug dose used (partial Eta‐square =0.565437). Post‐hoc tests (selected by Factor
options) suggested the formation of two homogeneous groups, the placebo group and the drug patient
group, indicating that raising the dose to a high one does not make a difference, since the cholesterol
levels obtained will be similar.
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ANCOVA assumptions remained to be tested. Homogeneity of variance and constancy of slopes of sim‐
ple regressions were confirmed using tests.

The normality of the rhesus distribution was assessed visually by plotting Q‐Q plots:

EXAMPLE 24.9. (stress.pqs file)
The example comes from the Datarium R‐Cran package.
Researchers want to evaluate the effect of a new treatment and exercise on stress reduction after acco‐
unting for differences in age. The value of the stressmeasure is the interval outcome variable Y. Because
the variables ”treatment” and ”exercise” have 2 and 3 categories, respectively, we will conduct a two‐
way ANCOVA to determine whether the interaction between exercise and treatment, while accounting
for the subjects’ age, is related to stress.
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Factors
treatmentX1 exerciseX2

yes
low

moderate
high

no
low

moderate
high

In the analysis window, I set ”stress” as the dependent variable, ”treatment” and ”exercise” as factors,
and add the interaction of these two variables, the continuous co‐variable is ”age.”

The result shows that the effect of treatment on stress varies with exercise intensity ‐ indicated by a
significant interaction of the two variables (p=0.016409). We plot a graph showing the expected mean
stress levels for each of the six subgroups into which the interaction divided our data, and determine
post‐hoc tests.
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According to the results of the post‐hoc test, we can speak of three different homogeneous groups: (B)
the high‐stress group is the group that exercises little or on average (whether or not they are treated
sauropods), (C) the lower‐stress group is the group that exercises a lot and is not treated, (A) the lowest‐
stress group is the group that exercises a lot and is treated. The values of the individual averages with
confidence intervals are shown in the table

Assumptions regarding equality of variances, slopes of regression lines and normality ofmodel residuals
are met.
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25 Mediation effect

Baron and Kenny (1986)[16] defined amediator (M) as a variable that significantly explains the relation‐
ship between the independent variable (X) and the outcome variable (Y). In mediation, the relationship
between the independent variable and the dependent variable is assumed to be an indirect effect that
exists due to the influence of a third variable (mediator).

one‐dimensional model X Yτ

multidimensional model X Y

M

a b

τ ′

We determine the magnitude of change by the difference in the coefficients describing the relationship
between variable X and variable Y in the univariate model:
Y = τ ·X + c
and in the multivariate model, that is, including the variable M:
Y = τ ·X + b ·M + c.

Difference:
τ − τ ′ = a · b

Mediation effect:
τ − τ ′

τ
· 100%

As a result, when themediator (M) is included in the regressionmodel that determines the relationship
between the variable X and Y, the influence of the independent variable τ is reduced to τ ′.

Tests to evaluate the mediation effect
The Sobel (1982)[153] test, the Aroian (1947)[7] test popularized by Baron and Kenny [16], and the Go‐
odman (1960)[68] test are tests that determine whether the reduction in the effect of the independent
variable on the outcome variable, when a mediator is included in the model, is a significant reduction
and therefore whether the mediation effect is statistically significant.

Hypotheses:

H0 : τ = τ ′

H1 : τ ̸= τ ′,

The test statistic for the Sobel test has the form:

Z =
a · b√

b2 · SE2
a + a2 · SE2

b

The test statistic for the Aroian test has the form:

Z =
a · b√

b2 · SE2
a + a2 · SE2

b + SE2
a · SE2

b

The test statistic for the Goodman test has the form:

Z =
a · b√

b2 · SE2
a + a2 · SE2

b − SE2
a · SE2

b
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These statistics have an asymptotically (for large sizes) normal distribution.

The p value, designated on the basis of the test statistic, is compared with the

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

Note
The Sobel test, as well as the Aroian and Goodman test, are very conservative tests and are intended
only for large samples (greater than 100 items).

Themediationeffect analysiswindow is invokedbyAdvanced Statistics→Multidivariate models→Mediation
effect.

EXAMPLE 25.1. Based on the paper by Mimar Sinan Fine (2017) [120].
The study includes 300 adults living in Istanbul. The dependent variable Y is systolic blood pressure and
the independent variable X is age. The mediating variable M is the frequency of alcohol consumption.
The purpose of this study is to investigate the relationship between age and systolic blood pressure and
to present the effect of frequency of alcohol consumption on this relationship.

• A one‐dimensional model was built that did not account for the potential mediator:
Y = 0.319 ·X + c.
The effect size of variable X (age) on variable Y (systolic blood pressure) was tau=0.319.

• A one‐dimensional model was constructed that did not include a potential mediator::
Y = 2.271 ·X + 5.333 ·M + c.
The effect size of variable X (age) on variable Y (systolic blood pressure) was tau’=2.271. We also
know from this model that b=5.333, and error SEb=0.786
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The difference between the coefficients is tau‐tau’= a*b=0.048. The effect of mediation is (tau‐
tau’)/tau=(0.319‐0.271)/0.371=0.15047, which means that M (frequency of alcohol consump‐
tion) modifies the relationship under study by decreasing the coefficient by about 15%.

• A one‐dimensional model was built to examine the effect of variable X on the mediator:
M = 0.009 ·X + c.
We know from this model that the coefficient a=0.009, and the error SEa=0.004. We enter all
this information in the analysis window obtaining the following report:

Based on the coefficients a and b and their standard errors, the result of Sobel (p=0.0327), Aroian
(p=0.0344) and Goodman (p=0.0310) tests are determined. The obtained p‐values indicate a sta‐
tistically significant mediator. Thus, we confirmed that frequency of alcohol consumption affects
the association of age with diastolic blood pressure so noticeably that it is worth explaining why
this effect occurs.

26 DIMENSION REDUCTION AND GROUPING

As the number of variables subjected to a statistical analysis grows, their precision grows, but so does
the level of complexity and difficulty in interpreting the obtained results. Too many variables increase
the risk of their mutual correlation. The information carried by some variables can, then, be redundant,
i.e. a part of the variables may not bring in new information for analysis but repeat the information
already given by other variables. The need for dimension reduction (a reduction of the number of va‐
riables) has inspired a whole group of analyses devoted to that issue, such as: factor analysis, principal
component analysis, cluster analysis or discriminant analysis. Those methods allow the detection of
relationships among the variables. On the basis of those relationships one can distinguish, for further
analysis, groups of similar variables and select only one representative (one variable) of each group, or
a new variable the values of which are calculated on the basis of the remaining variables in the group.
As a result, one can be certain that the information carried by each group is included in the analysis. In
this manner we can reduce a set of variables p to a set of variables k where k < p.

Similarly to grouping variables, we may be interested in grouping objects. Having at our disposal
information about certain characteristics of objects, we are often able to distinguish groups of objects
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similar in terms of those characteristics, e.g. based on information about the amounts spent by custo‐
mers of a certain store chain on particular items, we can divide customers in such away as to distinguish
customer segments with similar shopping preferences. As a result, your offer/advertising can be prepa‐
red not for the general public, but separately for each segment, so as to more precisely meet the needs
of a potential customer.

26.1 PRINCIPAL COMPONENT ANALYSIS

The window with settings for Principal component analysis is accessed via the menu Advenced stati-
stics → Multivariate Models → Principal Component Analysis.

Principal component analysis involves defining completely new variables (principal components) which
are a linear combination of the observed (original) variables. An exact analysis of the principal compo‐
nentsmakes it possible to point to those original variableswhich have a big influence on the appearance
of particular principal components, that is those variables which constitute a homogeneous group. A
principal component is then a representative of that group. Subsequent components are mutually or‐
thogonal (uncorrelated) and their number (k) is lower than or equal to the number of original variables
(p).

Particular principal components are a linear combination of original variables:

Zi = ai1X1 + ai2X2 + ...+ ainXp

where:

X1, X2, ..., Xp – original variables,
ai1, ai2, ..., aip – coefficients of the ith principal component

Each principal component explains a certain part of the variability of the original variables. They are,
then, naturally based on suchmeasures of variability as covariance (if the original variables are of similar
size and are expressed in similar units) or correlation (if the assumptions necessary in order to use
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covariance are not fulfilled).

Mathematical calculations which allow the distinction of principal components include defining the
eigenvalues and the corresponding eigenvectors from the following matrix equation:

(M − λI)a = 0

where:

λ – eigenvalues,
ai = (ai1, ai2, ..., aip) – eigenvector corresponding to the ith eigenvalue,
M – the variance matrix or covariance matrix of original variablesX1, X2, ..., Xp,
I – identity matrix (1 on the main diagonal, 0 outside of it).

26.1.1 Interpretation of coefficients related to the analysis

Every principal component is described by:

Eigenvalue
An eigenvalue informs about which part of the total variability is explained by a given principal
component. The first principal component explains the greatest part of variance, the second prin‐
cipal component explains the greatest part of that variance which has not been explained by the
previous component, and the subsequent component explains the greatest part of that variance
which has not been explained by the previous components. As a result, each subsequent principal
component explains a smaller and smaller part of the variance, whichmeans that the subsequent
values are smaller and smaller.

Total variance is a sum of the eigenvalues, which allows the calculation of the variability percen‐
tage defined by each component.

λi

λ1 + λ2 + ...+ λp
· 100%

Consequently, one can also calculate the cumulative variability and the cumulative variability per‐
centage for the subsequent components.

Eigenvector
An eigenvector reflects the influence of particular original variables on a given principal compo‐
nent. It contains the ai1, ai2, ..., aip coefficients of a linear combination which defines a compo‐
nent. The sign of those coefficients points to the direction of the influence and is accidental which
does not change the value of the carried information.

Factor loadings
Factor loadings, just as the coefficients included in the eigenvector, reflect the influence of parti‐
cular variables on a given principal component. Those values illustrate the part of the variance of
a given component is constituted by the original variables. When an analysis is based on the cor‐
relation matrix, we interpret those values as correlation coefficients between original variables
and a given principal value.

Variable contributions
They are based on the determination coefficients between original variables and a given principal
component. They show what percentage of the variability of a given principal component can be
explained by the variability of particular original variables.
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Communalities
They are based on the determination coefficients between original variables and a given principal
component. They show what percentage of a given original variable can be explained by the
variability of a few initial principal components. For example: the result concerning the second
variable contained in the column concerning the fourth principal component tells uswhat percent
of the variability of the second variable can be explained by the variability of four initial principal
components.

26.1.2 Graphical interpretation

A lot of information carried by the coefficients returned in the tables can be presented on one chart.
The ability to read charts allows a quick interpretation of many aspects of the conducted analysis. The
charts gather in one place the information concerning themutual relationships among the components,
the original variables, and the cases. They give a general picture of the principal components analysis
which makes them a very good summary of it.

Factor loadings graph

The graph shows vectors connected with the beginning of the coordinate system, which represent ori‐
ginal variables. The vectors are placed on a plane defined by the two selected principal components.

factor 1

fa
ct
or

2

A
B

C
D

E

The coordinates of the terminal points of the vector are the corresponding factor loadings of the va‐
riables.

Vector length represents the information content of an original variable carried by the principal com‐
ponents which define the coordinate system. The longer the vector the greater the contribution
of the original variable to the components. In the case of an analysis based on a correlation ma‐
trix the loadings are correlations between original variables and principal components. In such a
case points fall into the unit circle. It happens because the correlation coefficient cannot exceed
one. As a result, the closer a given original variable lies to the rim of the circle the better the
representation of such a variable by the presented principal components.

The sign of the coordinates of the terminal point of the vector i.e. the sign of the loading factor, po‐
ints to the positive or negative correlation of an original variable and the principal components
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forming the coordination system. If we consider both axes (2 components) together then original
variables can fall into one of four categories, depending on the combination of signs (+/−) and
their loading factors.

The angle between vectors indicates the correlation of original values:
0 < α < 900 – the smaller the angle between the vectors representing original variables, the
stronger the positive correlation among these variables.
α = 900 – the vectors are perpendicular, which means that the original variables are not corre‐
lated.
900 < α < 1800 – the greater the angle between the vectors representing the original variables,
the stronger the negative correlation among these variables.

Biplot

The graph presents 2 series of data placed in a coordinate system defined by 2 principal components.
The first series on the graph are data from the first graph (i.e. the vectors of original variables) and the
second series are points presenting particular cases.
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Point coordinates should be interpreted as standardized values, i.e. positive coordinates pointing to a
value higher than the mean value of the principal component, negative ones to a lower value,
and the higher the absolute value the further the points are from themean. If there are untypical
observations on the graph, i.e. outliers, they can disturb the analysis and should be removed, and
the analysis should be made again.

The distances between the points show the similarity of cases: the closer (in themeaning of Euclidean
distance) they are to one another, the more similar information is carried by the compared cases.

Orthographic projection of points on vectors are interpreted in the same manner as point coordina‐
tes, i.e. projections onto axes, but the interpretation concerns original variables and not principal
components. The values placed at the end of a vector are greater than the mean value of the ori‐
ginal variable, and the values placed on the extension of the vector but in the opposite direction
are values smaller than the mean.
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26.1.3 The criteria of dimension reduction

There is not one universal criterion for the selection of the number of principal components. For that
reason it is recommended to make the selection with the help of several methods.

The percentage of explained variance
The number of principal components to be assumed by the researcher depends on the extent
to which they represent original variables, i.e. on the variance of original variables they explain.
All principal components explain 100% of the variance of original variables. If the sum of the
variances for a few initial components constitutes a large part of the total variance of original
variables, then principal components can satisfactorily replace original variables. It is assumed
that the variance should be reflected in principal components to the extent of over 80 percent.

Kaiser criterion
According to the Kaiser criterion the principal components we want to leave for interpretation
should have at least the same variance as any standardized original variable. As the variance of
every standardized original variable equals 1, according to Kaiser criterion the important principal
components are those the eigenvalue of which exceeds or is near value 1.

Scree plot
The graph presents the pace of the decrease of eigenvalues, i.e. the percentage of explained
variance.
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scree end

The moment on the chart in which the process stabilizes and the decreasing line changes into a
horizontal one is the so‐called end of the scree (the end of sprinkling of the information about
the original values carried by principal components). The components on the right from the point
which ends the scree represent a very small variance and are, for the most part, random noise.

26.1.4 Defining principal components

When we have decided howmany principal components we need we can start generating them. In the
case of principal components created on the basis of a correlationmatrix they are computed as a linear
combination of standardized original values. If, however, principal components have been created on
the basis of a covariance matrix, they are computed as a linear combination of eigenvalues which have
been centralized with respect to the mean of the original values.

The obtained principal components constitute new variables with certain advantages. First of all, the
variables are not collinear. Usually there are fewer of them than original variables, sometimes much
fewer, and they carry the same or a slightly smaller amount of information than the original values.
Thus, the variables can easily be used in most multidimensional analyses.

Copyright ©2010‐2023 PQStat Software – All rights reserved 455



26 DIMENSION REDUCTION AND GROUPING

26.1.5 The advisability of using the Principal Component Analysis

If the variables are not correlated (the Pearson’s correlation coefficient is near 0), then there is no use
to conduct a principal component analysis, as in such a situation every variable is already a separate
component.

Bartlett’s test
The test is used to verify the hypothesis that the correlation coefficients between variables are
zero (i.e. the correlation matrix is an identity matrix).

Hypotheses:

H0 : M = I,
H1 : M ̸= I.

where:
M – the variance matrix or covariance matrix of original variablesX1, X2, ..., Xp,
I – the identity matrix (1 on the main axis, 0 outside of it).

The test statistic has the form presented below:

χ2 = −
(
n− 1− 2p+ 5

6

) k∑
i=1

lnλi,

where:
p – the number of original variables,
n – size (the number of cases),
λi – ith eigenvalue.

That statistic has, asymptotically (for large expected frequencies), the distribution χ2 with p(p−
1)/2 degrees of freedom.

On the basis of test statistics, p value is estimated and then compared with the significance level
α :

if p ≤ α =⇒ we rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

The Kaiser‐Meyer‐Olkin coefficient
The coefficient is used to check the degree of correlation of original variables, i.e. the strength of
the evidence testifying to the relevance of conducting a principal component analysis.

KMO =

∑p
i ̸=j

∑p
j ̸=i r

2
ij∑p

i ̸=j

∑p
j ̸=i r

2
ij +

∑p
i ̸=j

∑p
j ̸=i r̂

2
ij

,

rij – the correlation coefficient between the ith and the jth variable,
r̂ij – the partial correlation coefficient between the ith and the jth variable.

The value of the Kaiser coefficient belongs to the range < 0, 1 > where low values testify to
the lack of a need to conduct a principal component analysis, and high values are a reason for
conducting such an analysis.
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EXAMPLE 26.1. (file: iris.pqs) That classical set of data was first published in Ronald Aylmer Fisher’s
1936[58] work in which discriminant analysis was presented. The file contains the measurements (in
centimeters) of the length and width of the petals and sepals for 3 species of irises. The studied species
are setosa, versicolor, and virginica. It is interesting how the species can be distinguished on the basis
of the obtained measurements.

The photos are from scientific paper: Lee, et al. (2006r), ”Application of a noisy data classification technique to determine the occurrence of flashover in compartment fires”

Principal component analysis will allow us to point to those measurements (the length and the width
of the petals and sepals) which give the researcher the most information about the observed flowers.

The first stage of work, done even before defining and analyzing principal components, is checking the
advisability of conducting the analysis.We start, then, fromdefining a correlationmatrix of the variables
and analyzing the obtained correlations with the use of Bartlett’s test and the KMO coefficient.

The value p of Bartlett’s statistics points to the truth of the hypothesis that there is a significant diffe‐
rence between the obtained correlation matrix and the identity matrix, i.e. that the data are strongly
correlated. The obtained KMO coefficient is average and equals 0.54. We consider the indications for
conducting a principal component analysis to be sufficient.

The first result of that analysis which merits our special attention are eigenvalues:
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The obtained eigenvalues show that one or even two principal components will describe our data well.
The eigenvalue of the first component is 2.92 and the percent of the explained variance is 72.96. The
second component explains much less variance, i.e. 22.85%, and its eigenvalue is 9.91. According to
Kaiser criterion, one principal component is enough for an interpretation, as only for the first principal
component the eigenvalue is greater than 1. However, looking at the graph of the screewe can conclude
that the decreasing line changes into a horizontal one only at the third principal component.

From that we may infer that the first two principal components carry important information. Together
they explain a great part, as much as 95.81%, of the variance (see the cumulative % column).

The communalities for the first principal component are high for all original variables except the variable
of the width of the sepal, for which they equal 21.17%. That means that if we only interpret the first
principal component, only a small part of the variable of the width of the sepal would be reflected.

For the first two principal components the communalities are at a similar, very high level and they
exceed 90% for each of the analyzed variables, which means that with the use of those components
the variance of each variability is represented in over 90%.
In the light of all that knowledge it has been decided to separate and interpret 2 components.

In order to take a closer look at the relationship of principal components and original variables, that
is the length and the width of the petals and sepals, we interpret: eigenvectors, factor loadings, and
contributions of original variables.
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Particular original variables have differing effects on the first principal component. Let us put them in
order according to that influence:

1. The length of a petal is negatively correlatedwith the first component, i.e. the longer the petal, the
lower the values of that component. The eigenvector of the length of the petal is the greatest in
that component and equals ‐0.58. Its factor loading informs that the correlation between the first
principal component and the length of the petal is very high and equals ‐0.99 which constitutes
33.69% of the first component;

2. The width of the petal has an only slightly smaller influence on the first component and is also
negatively correlated with it;

3. We interpret the length of the sepal similarly to the two previous variables but its influence on
the first component is smaller;

4. The correlation of the width of the sepal and the first component is the weakest, and the sign of
that correlation is positive.

The second component represents chiefly the original variable ”sepal width”; the remaining original
variables are reflected in it to a slight degree. The eigenvector, factor loading, and the contribution of
the variable ”sepal width” is the highest in the second component.

Each principal component defines a homogeneous group of original values. Wewill call the first compo‐
nent ”petal size” as its most important variables are those which carry the information about the petal,
although it has to be noted that the length of the sepal also has a significant influence on the value of
that component. When interpreting we remember that the greater the values of that component, the
smaller the petals.
We will call the second component ”sepal width” as only the width of the sepal is reflected to a greater
degree here. The greater the values of that component, the narrower the sepal.

Finally, we will generate the components by choosing, in the analysis window, the option: Add Princi-
pal Components. A part of the obtained result is presented below:
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In order to be able to use the two initial components instead of the previous four original values, we
copy and paste them into the data sheet. Now, the researcher can conduct the further statistics on two
new, uncorrelated variables.

Analysis of the graphs of the two initial components

The analysis of the graphs not only leads the researcher to the same conclusions as the analysis
of the tables but will also give him or her the opportunity to evaluate the results more closely.

Factor loadings graph

The graph shows the two first principal components which represent 72.96% of the variance and
22.85% of the variance, together amounting to 95.81% of the variance of original values

The vectors representing original values almost reach the rim of the unit circle (a circle with the
radius of 1), which means they are all well represented by the two initial principal components
which form the coordinate system.

The angle between the vectors illustrating the length of the petal, the width of the petal, and the
length of the sepal is small, which means those variables are strongly correlated. The correlation
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of those variables with the components which form the system is negative, the vectors are in the
third quadrant of the coordinate system. The observed values of the coordinates of the vector are
higher for the first component than for the second one. Such a placement of vectors indicates that
they comprise a uniform group which is represented mainly by the first component.

The vector of the width of the sepal points to an entirely different direction. It is only slightly
correlatedwith the remaining original values, which is shownby the inclination anglewith respect
to the remaining original values – it is nearly a right angle. The correlation of that vector with
the first component is positive and not very high (the low value of the first coordinate of the
terminal point of the vector), and it is negative and high (the high value of the second coordinate
of the terminal point of the vector) in the case of the second component. From that wemay infer
that the width of the sepal is the only original variable which is well represented by the second
component.

Biplot

The biplot presents two series of data spread over the first two components. One series are the
vectors of original values which have been presented on the previous graph and the other series
are the points which carry the information about particular flowers. The values of the second
series are read on the upper axisX and the right axis Y . The manner of interpretation of vectors,
that is the first series, has been discussed with the previous graph. In order to understand the
interpretation of points let us focus on flowers number 33, 34, and 109.

Flowers number 33 and 34 are similar – the distance between points 33 and 34 is small. For
both points the value of the first component is much greater than the average and the value of
the second component is much smaller than the average. The average value, i.e. the arithmetic
mean of both components, is 0, i.e. it is the middle of the coordination system. Remembering
that the first component is mainly the size of the petals and the second one is mainly the width
of the sepal we can say that flowers number 33 and 34 have small petals and a large width of the
sepal. Flower number 109 is represented by a point which is at a large distance from the other
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two points. It is a flower with a negative first component and a positive, although not high second
component. That means the flower has relatively large petals while the width of the sepal is a bit
smaller than average.

Similar information can be gathered by projecting the points onto the lines which extend the
vectors of original values. For example, flower 33 has a large width of the sepal (high and positive
values on the projection onto the original value ”sepal width”) but small values of the remaining
original values (negative values on the projection onto the extension of the vectors illustrating
the remaining original values).

26.2 CLUSTER ANALYSIS

Cluster analysis is a series of methods for dividing objects or features (variables) into similar groups.
In general, these methods are divided into two classes: hierarchical methods and non‐hierarchical me‐
thods such as the k‐means method. In their algorithms, both methods use a similarity matrix to create
clusters based on it.

Object grouping and variable grouping are done in cluster analysis in exactly the sameway. In this chap‐
ter, clustering methods will be explained using object clustering as an example.

Note!
In order to ensure balanced influence of all variables on similarity matrix elements, data should be
standardized by choosing appropriate option in the analysis window. Lack of standardization gives mo‐
re influence on obtained result to variables expressed with higher numbers.

26.2.1 Hierarchical methods

Hierarchical cluster analysis methods involve building a hierarchy of clusters, starting from the smallest
(consistingof single objects) and endingwith the largest (consistingof themaximumnumber of objects).
Clusters are created on the basis of object similarity matrix.

AGGLOMERATION PROCEDURE

1. By following the indicated linkage method, the algorithm finds a pair of similar objects in the
similaritymatrix and combines them into a cluster;

2. The dimension of the similarity matrix is reduced by one (two objects are replaced by one) and
the distances in the matrix are recalculated;

3. Steps 2‐3 are repeated until a single cluster containing all objects is obtained.

Object similarity

In the process of working with cluster analysis, similarity or distance measures play an es‐
sential role. Themutual similarity of objects is placed in the similaritymatrix. A large variety
of methods for determining the distance/similarity between objects allows to choose such
measures that best reflect the actual relation. Distance and similarity measures are descri‐
bed in more detail in the section similarity matrix.

Cluster analysis is based on finding clusters inside a similarity matrix. Such a matrix is cre‐
ated in the course of performing cluster analysis. For the cluster analysis to be successful, it
is important to remember that higher values in the similaritymatrix should indicate greater
variation of objects, and lower values should indicate their similarity.
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Note!
To increase the influence of the selected variables on the elements of the similarity ma‐
trix, indicate the appropriate weights when defining the distance while remembering to
standardize the data.

For example, for people wanting to take care of a dog, grouping dogs according
to size, coat, tail length, character, breed, etc. will make the choice easier. Ho‐
wever, treating all characteristics identically may put completely dissimilar dogs
into one group. For most of us, on the other hand, size and character are more
important than tail length, so the similarity measures should be set so that size
and character are most important in creating clusters.

Object and cluster linkage methods

• Single linkage method ‐ the distance between clusters is determined by the distance of those
objects of each cluster that are closest to each other.

b

b

b b

b

b

• Complete linkage method ‐ the distance between clusters is determined by the distance of those
objects of each cluster that are farthest apart.

b

b

b b

b

b

• Unweighted pair‐group method using arithmetic averages ‐ the distance between clusters is de‐
termined by the average distance between all pairs of objects located within two different clu‐
sters.
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b

b

b b

b

b

• Weighted pair‐group metod using arithmetic averages ‐ similarly to the unweighted pair‐group
method using arithmetic averages method it involves calculating the average distance, but this
average is weighted by the number of elements in each cluster. As a result, we should choose this
method when we expect to get clusters with similar sizes.

• Ward’s method ‐ is based on the variance analysis concept ‐ it calculates the difference between
the sums of squares of deviations of distances of individual objects from the center of gravity
of clusters, to which these objects belong. This method is most often chosen due to its quite
universal character.

b

b

b

q

b

b

b

q

The result of a cluster analysis conducted using the hierarchical method is represented using a dendo‐
gram. ADendogram is a formof a tree indicating the relations between particular objects obtained from
the similarity matrix analysis. The cutoff level of the dendogram determines the number of clusters into
which we want to divide the collected objects. The choice of the cutoff is determined by specifying the
length of the bond at which the cutoff will occur as a percentage, where 100% is the length of the last
and also the longest bond in the dendogram.

Settingswindowof thehierarchical cluster analysis is opened viamenuAdvanced Statistics→Reduction
and grouping→Hierarchical Cluster Analysis.
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Example (26.1) c.d. (iris.pqs file)
The analysis will be performed on the classic data set of dividing iris flowers into 3 varieties based on the
width and length of the petals and sepal sepals (R.A. Fisher 1936[58]). Because this data set contains
information about the actual variety of each flower, after performing a cluster analysis it is possible to
determine the accuracy of the division made.

We assign flowers to particular groups on the basis of columns from 2 to 5. We choose the way of cal‐
culating distances e.g. Euclidean distance and the linkagemethod. Specifying the cutoff level of clusters
will allow us to cut off the dendogram in such a way that clusters will be formed ‐ in the case of this
analysis we want to get 3 clusters and to achieve this we change the cutoff level to 45. We will also
attach data+clusters to the report..
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In the dendogram, the order of the bonds and their lengths are shown.

To examine whether the extracted clusters represent the 3 actual varieties of iris flowers, we can copy
the column containing the information about cluster belonging from the report and paste it into the
datasheet. Like the clusters, the varieties are also described numerically by Codes/Labels/Format, so
we can easily perform a concordance analysis. We will check the concordance of our results with the
actual belonging of a given flower to the corresponding species using the Cohen’s Kappa method .
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For this example, the observed concordance is shown in the table:

We conclude from it that the virginica variety can be confused with the versicolor variety, hence we
observe 14 misclassifications. However, the Kappa concordance coefficient is statistically significant at
0.86, indicating that the clusters obtained are highly consistent with the actual flower variety.
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26.2.2 K‐means method

K‐meansmethod is based on an algorithm initially proposed by Stuart Lloyd and published in 1982 [104].
In this method, objects are divided into a predetermined number of k clusters. The initial clusters are
adjusted during the agglomeration procedure by moving objects between them so that the variation of
objects within the cluster is as small as possible and the cluster distances are as large as possible. The
algorithmworks on the basis of the matrix of Euclidean distances between objects, and the parameters
necessary in the procedure of agglomeration of the k‐means method are: starting centers and stopping
criterion. The starting centers are the objects from which the algorithm will start building clusters, and
the stopping criterion is the definition of how to stop the algorithm.

AGGLOMERATION PROCEDURE

1. Selection of starting centers

2. Based on the similarity matrix, the algorithm assigns each object to the nearest center

3. For the clusters obtained, the adjusted centers are determined.

4. Steps 2‐3 are repeated until the stop criterion is met.

Starting centers
The choice of starting centers has a major impact on the convergence of the k‐means algorithm for
obtaining appropriate clusters. The starting centers can be selected in two ways:

k‐means++ ‐ is the optimal selectionof startingpoints by using the k‐means++ algorithmproposed
in 2007 by David Arthur and Sergei Vassilvitskii [1]. It ensures that the optimal solution of the k‐
means algorithm is obtained with as few iterations as possible. The algorithm uses an element
of randomness in its operation, so the results obtained may vary slightly with successive runs
of the analysis. If the data do not form into natural clusters, or if the data cannot be effectively
divided into disconnected clusters, using k‐means++ will result in completely different results in
subsequent runs of the k‐means analysis. High reproducibility of the results, on the other hand,
demonstrates the possibility of good division into separable clusters.

n firsts ‐ allows the user to indicate points that are start centers by placing these objects in the
first positions in the data table.

Stop criterion is the moment when the belonging of the points to the classes does not change or the
number of iterations of steps 2 and 3 of the algorithm reaches a user‐specified number of iterations.

Because of the way the k‐means cluster analysis algorithm works, a natural consequence of it is to
compare the resulting clusters using a one‐way analysis of variance (ANOVA) for independent groups.

Settings window of the k-means cluster analysis is opened via menu Advanced Statistics→Reduction
and grouping→K-means cluster analysis.
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Example (26.1) c.d. (iris.pqs file)
The analysis will be performed on the classic data set of dividing iris flowers into 3 varieties based on
the width and length of the petals and sepal sepals (R.A. Fisher 1936[58]).

We assign flowers to particular groups on the basis of columns from 2 to 5. We also indicate that we
want to divide the flowers into 3 groups. As a result of the analysis, 3 clusters were formed, which
differed statistically significantly in each of the examined dimensions (ANOVA results), i.e. petal width,
petal length, sepal width as well as sepal length.
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The difference can be observed in the graphs where we show the belonging of each point to a cluster
in the two dimensions selected:
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By repeating the analysis we may get slightly different results, but the variation obtained will not be
large. It proves that data subjected to analysis form natural clusters and conducting a cluster analysis is
justified in this case.
Note no.1!
After running the analysis a few times, we can select the result we are most interested in, and then set
those data that are the starting centers at the beginning of the worksheet ‐ then the analysis performed
based on the starting centers selected as N first observations will consistently produce that result we
selected.
Note no.2!
To find out if the clusters represent the 3 actual varieties of iris flowers, we can copy the information
about belonging to a cluster from the report and paste it into the datasheet. We can check the con‐
sistency of our results with the actual affiliation of a given flower to the corresponding variety in the
same way as for the hierarchical cluster analysis.
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27 SURVIVAL ANALYSIS

Survival analysis is often used in medicine. In other fields of study it is also called reliability analysis,
duration analysis, or event history analysis. Its main goal is to evaluate the remaining time of the su‐
rvival of, for example, patients after an operation. Its main purpose is to evaluate the survival time of
e.g. patients after surgery ‐ the tools used here are life tables and Kaplan‐Meier curves. Another inte‐
resting aspect is the comparison of survival times e.g. survival times after different treatments ‐ for this
purpose methods of comparing 2 or more survival curves are used. A number of methods (regression
models) have also been developed to study the influence of various variables on survival time.

To help understand the issue, basic definitions will be given using an example describing the life expec‐
tancy of heart transplant patients:

Event – is the change interesting to the researcher, e.g. death;

Survival time – is the period of time between the initial state and the occurrence of a given event,
e.g. the length of a patient’s life after a heart transplantation.

Note!
In the analysis one columnwith the calculatedtimeought to bemarked.Whenwehave
at our disposal two points in time: the initial and the final ones, before the analysis we
calculate the time between the two points, using the datasheet formulas.

Censored observations – are the observations for which we only have incomplete pieces of in‐
formation about the survival time.

Censored and complete observations – an example concerning the survival time after a heart
transplantation:

– a complete observation – we know the date of the transplantation and the date of the
patient’s death so we can establish the exact survival time after the transplantation.

– observation censored on the right side – the date of the patient’s death is not known (the
patient is alive when the study finishes) so the exact survival time cannot be established.

– observation censored on the left side – the date of the heart transplantation is not known
but we know it was before this study started, and we cannot establish the exact survival
time.

complete observation

observation censored on the right side

observation censored on the left side

beginning
of the study

end
of the study

time
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Note

The end of the studymeans the end of the observation of the patient. It is not always the samemoment
for all patients. It can be the moment of losing touch with the patient (so we do not now the patient’s
survival time). Analogously, the beginning of the study does not have to be the same point in time for
all patients.

27.1 LIFE TABLES

The window with settings for life tables is accessed via the menu Advanced statistics→Survival analy-
sis→Life tables

Life tables are created for time ranges with equal spans, provided by the researcher. The ranges can be
defined by giving the step. For each range PQStat calculates:

• the number of entered cases – the number of people who survived until the time defined by the
range;

• the number of censored cases – the number of people in a given range qualified as censored
cases;

• the number of cases at risk – the number of people in a given range minus a half of the censored
cases in the given range;

• the number of complete cases – the number of people who experienced the event (i.e. died) in
a given range;

• proportions of complete cases – the proportion of the number of complete cases (deaths) in a
given range to the number of the cases at risk in that range;
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• proportions of the survival cases – calculated as 1 minus the proportion of complete cases in a
given range;

• cumulative survival proportion (survival function) – the probability of surviving over a given
period of time. Because to survive another period of time, onemust have survived all the previous
ones, the probability is calculated as the product of all the previous proportions of the survival
cases.

± standard error of the survival function;

• probability density – the calculated probability of experiencing the event (death) in a given range,
calculated in a period of time;

± standard error of the probability density;

• hazard rate – probability (calculated per a unit of time) that a patient who has survived until the
beginning of a given range will experience the event (die) in that range;

± standard error of the hazard rate

Note

In the case of a lack of complete observations in any range of survival time range there is the possibility
of using correction. The zero number of complete cases is then replaced with value 0.5.

Graphic interpretation

We can illustrate the information obtained thanks to the life tables with the use of several charts:

• a cumulative survival proportion graph,

• a probability density graph,

• a hazard rate graph.

EXAMPLE 27.1. (transplant.pqs file)
Patients’ survival rate after the transplantation of a liver was studied. 89 patients were observed over
21 years. The age of a patient at the time of the transplantation was in the range of ⟨45years; 60years).
A fragment of the collected data is presented in the table below:

The complete data in the analysis are those as to which we have complete information about the length
of life after the transplantation, i.e. described as ”death” (it concerns 53 people which constitutes
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59.55% of sample). The censored data are those about which we do not have that information be‐
cause at the time when the study was finished the patients were alive (36 people, i.e. 40.45% of them).
We build the life tables of those patients by creating time periods of 3 years:

For each 3‐year period of timewe can interpret the results obtained in the table, for example, for people
living for at least 9 years after the transplantation who are included in the range [9;12):

• the number of people who survived 9 years after the transplantation is 39,

• there are 7 people about whom we know they had lived at least 9‐12 years at the moment the
information about them was gathered but we do not know if they lived longer as they were left
out of the study after that time,

• the number of people at the risk of death in that age range is 36,

• there are 14 people about whom we know they died 9 to 12 years after the transplantation,

• 39.4% of the endangered patients died 9 to 12 years after the transplantation,

• 60.6% of the endangered patients lived 9 to 12 years after the transplantation,

• the percent of survivors 9 years after the transplantation is 61.4%± 5%,

• 0,08± 0.02 is the death probability for each year from the 9‐12 range.

The results will be presented on a few graphs:

The probability of survival decreases with the time passed since the transplantation. We do not, howe‐
ver, observe a sudden plunge of the survival function, i.e. a period of time in which the probability of
death would rise dramatically.
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27.2 KAPLAN‐MEIER CURVES

Kaplan‐Meier curves allow the evaluation of the survival time without the need to arbitrarily group the
observations like in the case of life tables. The estimatorwas introducedby Kaplan andMeier (1958)[88].

Thewindowwith settings forKaplan-Meier curve is accessed via themenuAdvanced statistics→Survival
analysis→Kaplan-Meier Analysis
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As with survival tables we calculate the survival function, i.e. the probability of survival until a certa‐
in time. The graph of the Kaplan‐Meier survival function is created by a step function. Based on the
standard error (Greenwood formula) and the logarithmic transformation (log‐log), confidence intervals
around this curve are constructed. The point of time at which the value of the function is 0.5 is the
survival time median. The median indicates 50% risk of mortality, it means we can expect that half of
the patients will die within a specific time. Both the median and other percentiles are determined as
the shortest survival time for which the survival function is smaller or equal to a given percentile. For
the median, a confidence interval is determined based on the ”test‐based” method by Brookmeyer and
Crowley (1982)[28]. The survival time mean is determined as the field under the survival curve.

The data concerning the survival time are usually very heavily skewed so in the survival analysis the
median is a better measure of the central tendency than the mean.

Przykład (27.1) c.d. (transplant.pqs file)
We present the survival time after a liver transplantation, with the use of the Kaplan‐Meier curve
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The survival function does not suddenly plunge right after the transplantation. Therefore, we conclude
that the initial period after the transplantation does not carry a particular risk of death. The value of
the median shows that within 10 years after the transplant, we expect that half of the patients will die.
The value is marked on the graph by drawing a line in point 0.5 which signifies the median. In a similar
manner we mark the quartiles in the graph.
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We can visualize the confidence interval for the median on a graph by drawing vertical lines based on
the confidence interval around the curve and lines at the 0.5 level.

27.3 COMPARISON OF SURVIVAL CURVES

The survival functions can be built separately for different subgroups, e.g. separately for women and
men, and then compared. Such a comparison may concern two curves or more.

The window with settings for the comparison of survival curves is accessed via the menu Advanced
statistics→Survival analysis→Comparison groups
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Comparisons of k survival curvesS1, S2, ..., Sk, at particular points of the survival time t, in the program
can be made with the use of three tests:

Log‐rank test the most popular test drawing on the Mantel‐Heanszel procedure for many
2 x 2 tables (Mantel‐Heanszel 1959[109], Mantel 1966[111], Cox 1972[47]),
Gehan’s generalization of Wilcoxon’s test deriving from Wilcoxon’s test (Breslow 1970,
Gehan 1965[66][67]),
Tarone‐Ware test deriving fromWilcoxon’s test (Tarone and Ware 1977[156]).

The three tests are based on the same test statistic, they only differ inweights wj the particular points
of the timeline on which the test statistic is based.

Log‐rank test:wj = 1 – all the points of the timeline have the same weight which gives the
later values of the timeline a greater influence on the result;
Gehan’s generalization of Wilcoxon’s test: wj = nj – time moments are weighted with
the number of observations in each of them, so greater weights are ascribed to the initial
values of the time line;
Tarone‐Ware test: wj =

√
nj – time moments are weighted with the root of the number

of observations in each of them, so the test is situated between the two tests described
earlier.

An important condition for using the tests above is the proportionality of hazard. Hazard, defined as
the slope of the survival curve, is the measure of how quickly a failure event takes place. Breaking the
principle of hazard proportionality does not completely disqualify the tests above but it carries some
risks. First of all, the placement of the point of the intersection of the curves with respect to the timeline
has a decisive influence on decreasing the power of particular tests.

27.3.1 Differences among the survival curves

Hypotheses:

H0 : S1(t) = S2(t) = ... = Sk(t), for all t,
H1 : not all Si(t) are equal.

In calculations was used chi‐square statistics form:

χ2 = U ′V −1U

where:

Ui =
∑m

j=1wj(dij − eij)

V ‐ covariance matrix of dimensions (k − 1)× (k − 1)

where:
diagonal:

∑m
j=1w

2
j
nij(nj−nij)dj(nj−dj)

n2
j (nj−1)

,

off diagonal:
∑m

j=1w
2
j
nijnljdj(nj−dj)

n2
j (nj−1)

m – number of moments in time with failure event (death),

dj =
∑k

i=1 dij – observed number of failure events (deaths) in the j‐th moment of time,

dij – observed number of failure events (deaths) in the w i‐th group w in the j‐th moment
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of time,

eij =
nijdj
nj

– expected number of failure events (deaths) in the w i‐th group w in the j‐th
moment of time,

nj =
∑k

i=1 nij – the number of cases at risk in the j‐th moment of time.

The statistic asymptotically (for large sizes) has the χ2 distribution with df = k−1 degrees of freedom.

The p value, estimated nn the basis of test statistics, is compared with the significance level α :

if p ≤ α =⇒ we rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

Hazard ratio
In the log‐rank test the observed values of failure events (deaths) Oi =

∑m
j=1 dij and the appropriate

expected values Ei =
∑m

j=1 eij are given.

The measure for describing the size of the difference between a pair of survival curves is
the hazard ratio (HR).

HR =
O1/E1

O2/E2

If the hazard ratio is greater than 1, e.g. HR = 2, then the degree of the risk of a failure
event in the first group is twice as big as in the second group. The reverse situation takes
place when HR is smaller than one. When HR is equal to 1 both groups are equally at
risk.

Note
The confidence interval forHR is calculated on the basis of the standard deviation of the
HR logarithm (Armitage and Berry 1994[11]).

27.3.2 Survival curves trend

Hypotheses:

H0 : In the studied population there is no trend in the placement of the S1, S2, ..., Sk curves,
H1 : In the studied population there is a trend in in the placement of the S1, S2, ..., Sk curves.

In the calculation the chi‐square statistic was used, in the following form:

χ2 =
(c′U)2

c′V c

where:

c = (c1, c2, ..., ck) – vector of the weights for the compared groups, informing about their
natural order (usually the subsequent natural numbers).

The statistic asymptotically (for large sizes) has the χ2 distribution with 1 degree of freedom.

On the basis of test statistics, p value is estimated and then compared with the significance level α :

if p ≤ α =⇒ we rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

In order to conduct a trend analysis in the survival curves the grouping variable must be a numerical
variable in which the values of the numbers inform about the natural order of the groups. The numbers
in the analysis are treated as the c1, c2, ..., ck weights.
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27.3.3 Survival curves for the stratas

Often, whenwewant to compare the survival times of two ormore groups, we should remember about
other factors which may have an impact on the result of the comparison. An adjustment (correction)
of the analysis by such factors can be useful. For example, when studying rest homes and comparing
the length of the stay of people below and above 80 years of age, there was a significant difference in
the results. We know, however, that sex has a strong influence on the length of stay and the age of the
inhabitants of rest homes. That is why, when attempting to evaluate the impact of age, it would be a
good idea to stratify the analysis with respect to sex.

Hypotheses for the differences in survival curves:
H0 : S∗

1(t) = S∗
2(t) = ... = S∗

k(t), for all t,
H1 : not all S∗

i (t) are equal.
Hypotheses for the analysis of trends in survival curves:

H0 : In the studied population there is no trend in the placement of the S∗
1 , S

∗
2 , ..., S

∗
k , curves,

H1 : In the studied population there is a trend in in the placement of the S∗
1 , S

∗
2 , ..., S

∗
k curves.

where S∗
1(t), S

∗
2(t), ..., S

∗
k(t) ‐are the survival curves after the correction by the variable

determining the strata.

The calculations for test statistics are based on formulas described for the tests, not taking into account
the strata, with the difference that matrix U and V is replaced with the sum of matrices

∑L
l=1 U and∑L

l=1 V . The summation is made according to the strata created by the variables with respect to which
we adjust the analysis l=1,2,...,L

On the basis of test statistics, p value is estimated and then compared with the significance level α :
if p ≤ α =⇒ we rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

Example (27.1) continued (transplant.pqs file)
The differences for two survival curves

Liver transplantations were made in two hospitals. We will check if the patients’ survival time after
transplantations depended on the hospital in which the transplantations were made. The comparisons
of the survival curves for those hospitals will be made on the basis of all tests proposed in the program
for such a comparison.
Hypotheses:

H0 : the survival curve of the patients of hospital no. 1= the survival curve of the patients of hospital no. 2,
H1 : the survival curve of the patients of hospital no. 1 ̸= the survival curve of the patients of hospital no. 2.
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On the basis of the significance level α = 0.05, based on the obtained value p=0.6004 for the log‐rank
test (p=0.6959 for Gehan’s and 0.6465 for Tarone‐Ware) we conclude that there is no basis for rejecting
the hypothesisH0. The length of life calculated for the patients of both hospitals is similar.

The same conclusion will be reached when comparing the risk of death for those hospitals by determi‐
ning the risk ratio. The obtained estimated value is HR = 1.1499 and 95% of the confidence interval
for that value contains 1: ⟨0.6570, 2.0126⟩.

Differences for many survival curves

Liver transplantations were made for people at different ages. 3 age groups were distinguished: ⟨45
years; 50 years), ⟨50 years; 55 years), ⟨55 years; 60 years). We will check if the patients’ survival time
after transplantations depended on their age at the time of the transplantation.
Hypotheses:

H0 : survival rates of patients aged ⟨45 years; 50 years), ⟨50 years; 55 years), ⟨55 years; 60 years)
are similar,

H1 : at least one survival curve out of the 3 curves above
differs from the other curves.
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On the basis of the significance level α = 0.05, based on the obtained value p=0.0692 in the log‐rank
test (p=0.0928 for Gehan’s and p=0.0779 for Tarone‐Ware) we conclude that there is no basis for the
rejection of the hypothesisH0. The length of life calculated for the patients in the three compared age
groups is similar. However, it is noticeable that the values are quite near to the standard significance
level 0.05.

When examining the hazard values (the ratio of the observed values and the expected failure events)
we notice that they are a little higher with each age group (0.68, 0.93, 1.43). Although no statistically
significant differences among them are seen it is possible that a growth trend of the hazard value (trend
in the position of the survival rates) will be found.

Trend for many survival curves

If we introduce into the test the information about the ordering of the compared categories (we will
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use the age variable in which the age ranges will be numbered, respectively, 1, 2, and 3), we will be able
to check if there is a trend in the compared curves. We will study the following hypotheses:

H0 : a lack of a trend in the survival time curves of the patients after a transplantation
(a trend dependent on the age of the patients at the time of a transplantation),

H1 : the older the patients at the time of a transplantation, the greater/smaller
the probability of their survival over a given period of time.

On the basis of the significance level α = 0.05, based on the obtained value p=0.0237 in the log‐rank
test (p=0.0317 for Gehan’s and p=0.0241 for Tarone‐Ware) we conclude that the survival curves are
positioned in a certain trend. On the Kaplan‐Meier graph the curve for people aged ⟨55 years; 60 years)
is the lowest. Above that curve there is the curve for patients aged ⟨50 years; 55 years). The highest
curve is the one for patients aged ⟨45 years; 50 years). Thus, the older the patient at the time of a trans‐
plantation, the lower the probability of survival over a certain period of time.

Survival curves for stratas

Let us now check if the trend observed before is independent of the hospital in which the transplanta‐
tion took place. For that purpose we will choose a hospital as the stratum variable.
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The report contains, firstly, an analysis of the strata: both the test results and the hazard ratio. In the first
stratum the growing trend of hazard is visible but not significant. In the second stratum a trend with the
same direction (a result bordering on statistical significance) is observed. A cumulation of those trends
in a common analysis of strata allowed the obtainment of the significance of the trend of the survival
curves. Thus, the older the patient at the time of a transplantation, the lower the probability of survival
over a certain period of time, independently from the hospital in which the transplantation took place.

A comparative analysis of the survival curves, corrected by strata, yields a result significant for the log‐
rank and Tarone‐Ware tests and not significant for Gehan’s test, which might mean that the differences
among the curves are not so visible in the initial survival periods as in the later ones. By looking at the
hazard ratio of the curves compared in pairs
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we can localize significant differences. For the comparison of the curve of the youngest group with the
curve of the oldest group the hazard ratio is the smallest, 0.53, the 95% confidence interval for that ratio,
⟨0.26 ; 1.05⟩, does contain value 1 but is on the verge of that value, which can suggest that there are
significant differences between the respective curves. In order to confirm that supposition an inquisitive
researcher can, with the use of the data filter in the analysis window, compare the curves in pairs.

However, it ought to be remembered that one of the corrections for multiple comparisons should be
used and the significance level should be modified. In this case, for Bonferroni’s correction, with three
comparisons, the significance level will be 0.017. For simplicity, we will only avail ourselves of the log‐
rank test.

⟨45 lat; 50 lat) vs ⟨50 lat; 55 lat)

⟨45 lat; 50 lat) vs ⟨55 lat; 60 lat)

⟨50 lat; 55 lat) vs ⟨55 lat; 60 lat)

As expected, statistically significant differences only concern the survival curves of the youngest and
oldest groups.

27.4 COX PROPORTIONAL HAZARD REGRESSION

The window with settings for Cox regression is accessed via the menu Advanced statistics→Survival
analysis→Cox PH regression
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Cox regression, also known as the Cox proportional hazard model (Cox D.R. (1972)[47]), is the most
popular regressive method for survival analysis. It allows the study of the impact of many indepen‐
dent variables (X1,X2, . . .,Xk) on survival rates. The approach is, in a way, non‐parametric, and thus
encumbered with few assumptions, which is why it is so popular. The nature or shape of the hazard
function does not have to be known and the only condition is the assumption which also pertains to
most parametric survival models, i.e. hazard proportionality.
The function on which Cox proportional hazard model is based describes the resulting hazard and is the
product of two values only one of which depends on time (t):

h(t,X1, X2, ..., Xk) = h0(t) · exp

(
k∑

i=1

βiXi

)
,

where:

h(t,X1, X2, ..., Xk) –the resulting hazard describing the risk changing in time and depen‐
dent on other factors, e.g. the treatment method,

h0(t) –the baseline hazard, i.e. the hazard with the assumption that all the explanatory
variables are equal to zero,

∑k
i=1 βiXi –a combination (usually linear) of independent variables and model parame‐

ters,
X1, X2, . . . Xk –explanatory variables independent of time,
β1, β2, . . . βk –parameters.

Dummy variables and interactions in the model
A discussion of the coding of dummy variables and interactions is presented in chapter 24.1
Preparation of the variables for the analysis in multidimensional models.
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Correction for ties in Cox regression is based on Breslow’s method[27]

The model can be transformed into a the linear form:

ln
(
h(t,X1, X2, ..., Xk)

h0(t)

)
=

k∑
i=1

βiXi.

In such a case, the solution of the equation is the vector of the estimates of parameters β0, β1, . . . , βk
called regression coefficients:

b =


b1
b2
...
bk

 .

The coefficients are estimated by the so‐called partial maximum likelihood estimation. The method is
called ”partial” as the search for the maximum of the likelihood function L (the program makes use of
the Newton‐Raphson iterative algorithm) only takes place for complete data; censored data are taken
into account in the algorithm but not directly.

There is a certain error of estimation for each coefficient. Themagnitude of that error is estimated from
the following formula:

SEb =
√
diag(H−1)b

where:

diag(H−1) is the main diagonal of the covariance matrix.

Note
When building a model it ought to be remembered that the number of observations should be ten ti‐
mes greater than or equal to the ratio of the estimated model parameters (k) and the smaller one of
the proportions of the censored or complete sizes (p), i.e. (n ≥ 10k/p) Peduzzi P., et al(1995)[129].

Note
When building the model you need remember that the independent variables should not be multicolli‐
near. In a case of multicollinearity estimation can be uncertain and the obtained error values very high.

Note
The criterion of convergence of the function of the Newton‐Raphson iterative algorithm can be control‐
led with the help of two parameters: the limit of convergence iteration (it gives the maximum number
of iterations in which the algorithm should reach convergence) and the convergence criterion (it gives
the value below which the received improvement of estimation shall be considered to be insignificant
and the algorithm will stop).

27.4.1 Hazard Ratio

An individual hazard ratio (HR) is now calculated for each independent variable :

HRi = eβi .

It expresses the change of the risk of a failure event when the independent variable grows by 1 unit.
The result is adjusted to the remaining independent variables in the model – it is assumed that they
remain stable while the studied independent variable grows by 1 unit.

TheHR value is interpreted as follows:
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• HR > 1means the stimulating influence of the studied independent variable on the occurrence
of the failure event, i.e. it gives information about how much greater the risk of the occurrence
of the failure event is when the independent variable grows by 1 unit.

• HR < 1means the destimulating influence of the studied independent variable on the occurren‐
ce of the failure event, i.e. it gives information about howmuch lower the risk is of the occurrence
of the failure event when the independent variable grows by 1 unit.

• HR ≈ 1means that the studied independent variable has no influence on the occurrence of the
failure event (1).

Note

If the analysis is made for amodel other than linear or if interaction is taken into account, then, just as in
the logistic regression model we can calculate the appropriateHR on the basis of the general formula
which is a combination of independent variables.

27.4.2 Model verification

Statistical significance of particular variables in the model (significance of the odds ratio)
On the basis of the coefficient and its error of estimation we can infer if the independent variable
for which the coefficient was estimated has a significant effect on the dependent variable. For
that purpose we use Wald test.

Hypotheses:

H0 : βi = 0,
H1 : βi ̸= 0.

or, equivalently: H0 : ORi = 1,
H1 : ORi ̸= 1.

The Wald test statistics is calculated according to the formula:

χ2 =

(
bi

SEbi

)2

The statistic asymptotically (for large sizes) has the χ2 distribution with 1 degree of freedom.
On the basis of test statistics, p value is estimated and then compared with the significance level
α :

if p ≤ α =⇒ we rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

The quality of the constructed model
A good model should fulfill two basic conditions: it should fit well and be possibly simple. The
quality of Cox proportional hazard model can be evaluated with a few general measures based
on: LFM –the maximum value of likelihood function of a full model (with all variables),
L0 –the maximum value of the likelihood function of a model which only contains one free word,
d –the observed number of failure events.

• Information criteria are based on the information entropy carried by the model (model in‐
security), i.e. they evaluate the lost information when a given model is used to describe the
studied phenomenon. We should, then, choose the model with the minimum value of a gi‐
ven information criterion.
AIC,AICc, andBIC is a kind of a compromise between the good fit and complexity. The
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second element of the sum in formulas for information criteria (the so‐called penalty func‐
tion) measures the simplicity of the model. That depends on the number of parameters (k)
in themodel and the number of complete observations (d). In both cases the element grows
with the increase of the number of parameters and the growth is the faster the smaller the
number of observations.
The information criterion, however, is not an absolute measure, i.e. if all the compared mo‐
dels do not describe reality well, there is no use looking for a warning in the information
criterion.
– Akaike information criterion

AIC = −2 lnLFM + 2k,

It is an asymptomatic criterion, appropriate for large sample sizes.
– Corrected Akaike information criterion

AICc = AIC +
2k(k + 1)

d− k − 1
,

Because the correction of the Akaike information criterion concerns the sample size
(the number of failure events) it is the recommended measure (also for smaller sizes).

– Bayesian information criterion or Schwarz criterion

BIC = −2 lnLFM + k ln(d),

Just like the corrected Akaike criterion it takes into account the sample size (the number
of failure events), Volinsky and Raftery (2000)[162].

• PseudoR2 –the so‐calledMcFadden R2 is a goodness of fitmeasure of themodel (an equiva‐
lent of the coefficient of multiple determination R2 defined for multiple linear regression).
The value of that coefficient falls within the range of< 0; 1), where values close to 1 mean
excellent goodness of fit of the model, 0 –– a complete lack of fit. Coefficient R2

Pseudo is
calculated according to the formula:

R2
Pseudo = 1− lnLFM

lnL0
.

As coefficient R2
Pseudo does not assume value 1 and is sensitive to the amount of variables

in the model, its corrected value is calculated:

R2
Nagelkerke =

1− e−(2/d)(lnLFM−lnL0)

1− e(2/d) lnL0
or R2

Cox−Snell = 1− e
(−2 lnL0)−(−2 lnLFM )

d .

• Statistical significance of all variables in the model
The basic tool for the evaluation of the significance of all variables in the model is the Like‐
lihood Ratio test. The test verifies the hypothesis:

H0 : all βi = 0,
H1 : there is βi ̸= 0.

The test statistic has the form presented below:

χ2 = −2 ln(L0/LFM ) = −2 ln(L0)− (−2 ln(LFM )).

The statistic asymptotically (for large sizes) has the χ2 distribution with k degrees of fre‐
edom.
On the basis of test statistics, p value is estimated and then compared with α :
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if p ≤ α =⇒ we rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

• AUC ‐ area under the ROC curve –The ROC curve – constructed based on information about
the occurrence or absence of an event and the combination of independent variables and
model parameters – allows us to assess the ability of the built PH Cox regression model
to classify cases into two groups: (1–event) and (0–no event). The resulting curve, and in
particular the area under it, illustrates the classification quality of the model. When the
ROC curve coincides with the diagonal y = x, the decision to assign a case to the selected
class (1) or (0) made on the basis of the model is as good as randomly allocating the cases
under study to these groups. The classification quality of the model is good when the curve
is well above the diagonal y = x, that is, when the area under the ROC curve is much larger
than the area under the straight line y = x, thus larger than 0.5

Hypotheses:

H0 : AUC = 0.5,
H1 : AUC ̸= 0.5.

The test statistic has the form:
Z =

AUC − 0.5

SE0.5
,

where:
SE0.5 –field error.

The statistic Z has asymptotically (for large numbers) a normal distribution.
On the basis of test statistics, p value is estimated and then compared with α :

if p ≤ α =⇒ we rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

In addition, a proposed cut‐off point value for the combination of independent variables
and model parameters is given for the ROC curve.

27.4.3 Analysis of model residuals

The analysis of the of themodel residuals allows the verification of its assumptions. Themain goal of the
analysis in Cox regression is the localization of outliers and the study of hazard proportionality. Typically,
in regression models residuals are calculated as the differences of the observed and predicted values
of the dependent variable. However, in the case of censored values such a method of determining the
residuals is not appropriate. In the programwe can analyze residuals described as:Martingale, deviance,
and Schoenfeld. The residuals can be drawn with respect to time or independent variables.

Hazard proportionality assumption
Anumber of graphicalmethods for evaluating the goodness of fit of the proportional hazardmodel have
been created (Lee and Wang 2003[97]). The most widely used are the methods based on the model
residuals. As in the case of other graphical methods of evaluating hazard proportionality this one is a
subjective method. For the assumption of proportional hazard to be fulfilled, the residuals should not
form any pattern with respect to time but should be randomly distributed around value 0.

Martingale – the residuals can be interpreted as a difference in time [0, t] between the observed num‐
ber of failure events and their number predicted by the model. The value of the expected residu‐
als is 0 but they have a diagonal distribution which makes it more difficult to interpret the graph
(they are in the range of−∞ to 1).
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Deviance – similarly tomartingale, asymptotically they obtain value 0 but are distributed symmetrically
around zero with standard deviation equal to 1 when the model is appropriate. The deviance va‐
lue is positivewhen the studied object survives for a shorter period of time than the one expected
on the basis of the model, and negative when that period is longer. The analysis of those residu‐
als is used in the study of the proportionality of the hazard but it is mainly a tool for identifying
outliers. In the residuals report those of them which are further than 3 standard deviations away
from 0 are marked in red.

Schoenfeld – the residuals are calculated separately for each independent variable and only defined
for complete observations. For each independent variable the sum of Shoenfeld residuals and
their expected value is 0. An advantage of presenting the residuals with respect to time for each
variable is the possibility of identifying a variable which does not fulfill, in themodel, the assump‐
tion of hazard proportionality. That is the variable for which the graph of the residuals forms a
systematic pattern (usually the studied area is the linear dependence of the residuals on time).
An even distribution of points with respect to value 0 shows the lack of dependence of the resi‐
duals on time, i.e. the fulfillment of the assumption of hazard proportionality by a given variable
in the model.

If the assumption of hazard proportionality is not fulfilled for any of the variables in Cox model, one
possible solution is to make Cox’s analyses separately for each level of that variable.

27.5 COMPARISON OF COX PH REGRESSION MODELS

Thewindowwith settings formodel comparison is accessed via themenuAdvanced statistics→Survival
analysis→Cox PH Regression – comparing models

Due to the possibility of simultaneous analysis of many independent variables in one Cox regression
model, there is a problem of selection of an optimum model. When choosing independent variables
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one has to remember to put into the model variables strongly correlated with the survival time and
weakly correlated with one another.

When comparing models with various numbers of independent variables we pay attention to informa‐
tion criteria (AIC,AICc,BIC) and to goodness of fit of themodel (R2

Pseudo,R2
Nagelkerke,R2

Cox−Snell).
For each model we also calculate the maximum of likelihood function which we later compare with the
use of the Likelihood Ratio test.

Hypotheses:

H0 : LFM = LRM ,
H1 : LFM ̸= LRM ,

where:
LFM , LRM – the maximum of likelihood function in compared models (full and reduced).

The test statistic has the form presented below:

χ2 = −2 ln(LRM/LFM ) = −2 ln(LRM )− (−2 ln(LFM ))

The statistic asymptotically (for large sizes) has the χ2 distribution with df = kFM − kRM degrees of
freedom, where kFM i kRM is the number of estimated parameters in compared models.

On the basis of test statistics, p value is estimated and then compared with α :

if p ≤ α =⇒ we rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

We make the decision about which model to choose on the basis of the size: AIC, AICc, BIC,
R2

Pseudo, R2
Nagelkerke, R2

Cox−Snell and the result of the Likelihood Ratio test which compares the sub‐
sequently created (neighboring) models. If the compared models do not differ significantly, we should
select the one with a smaller number of variables. This is because a lack of a difference means that the
variables present in the full model but absent in the reducedmodel do not carry significant information.
However, if the difference is statistically significant, it means that one of them (the one with the greater
number of variables) is significantly better than the other one.

In the program PQStat the comparison of models can be done manually or automatically.

• Manualmodel comparison – construction of 2 models:

– a full model – a model with a greater number of variables,
– a reduced model – a model with a smaller number of variables – such a model is created

from the full model by removing those variableswhich are superfluous from the perspective
of studying a given phenomenon.

The choice of independent variables in the compared models and, subsequently, the choice of a
better model on the basis of the results of the comparison, is made by the researcher.

• Automaticmodel comparison is done in several steps:

step 1 Constructing the model with the use of all variables.
step 2 Removing one variable from the model. The removed variable is the one which,

from the statistical point of view, contributes the least information to the current
model.

step 3 A comparison of the full and the reduced model.
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step 4 Removing another variable from the model. The removed variable is the one
which, from the statistical point of view, contributes the least information to the
current model.

step 5 A comparison of the previous and the newly reduced model.
...

In that way numerous, ever smaller models are created. The last model only contains 1 indepen‐
dent variable.

EXAMPLE 27.2. (remissionLeukemia.pqs file)
The analysis is based on the data about leukemia described in the work of Freirich et al. 1963[63] and
further analyzed by many authors, including Kleinbaum and Klein 2005[91]. The data contain informa‐
tion about the time (in weeks) of remission until the moment when a patient was withdrawn from the
study because of an end of remission (a return of the symptoms) or of the censorship of the informa‐
tion about the patient. The end of remission is the result of a failure event and is treated as a complete
observation. An observation is censored if a patient remains in the study to the end and remission does
not occur or if the patient leaves the study.
Patients were assigned to one of two groups: a group undergoing traditional treatment (marked as 1
and colled ”placebo group”) and a group with new kind of treatment (marked as 0). The information
about the patients’ sex was gathered (1=man, 0=woman) and about the values of the indicator of the
number of white cells, marked as ”log WBC”, which is a well‐known prognostic factor.
The aim of the study is to determine the influence of kind of treatment on the time of remaining in re‐
mission, taking into account possible confounding factors and interactions. In the analysis we will focus
on the ”Rx (1=placebo, 0=new treatment)” variable. We will place the ”log WBC” variable in the model
as a possible confounding factor (which modifies the effect). In order to evaluate the possible interac‐
tions of ”Rx” and ”log WBC” we will also consider a third variable, a ratio of the interacting variables.
We will add the variable to the model by selecting, in the analysis window, the Interactions button and
by setting appropriate options there.

We build three Cox models:

Model A only contains the ”Rx” variable:

Model B contains the ”Rx” variable and the potentially confounding variable ”log WBC”:
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Model C ontains the ”Rx” variable, the ”log WBC” variable, and the potential effect of the interactions
of those variables: ”Rx× log WBC”:

The variablewhich informs about the interactionof ”Rx” and ”logWBC”, included inmodel C, is not signi‐
ficant inmodel C, according to theWald test. Thus, we can view further consideration of the interactions
of the two variables in the model to be unnecessary. We will obtain similar results by comparing, with
the use of a likelihood ratio test, model C with model B. We can make the comparison by choosing the
Cox PH regression – comparing models menu. We will then obtain a non‐significant result (p=0.5134)
which means that model C (model with interaction) is NOT significantly better than model B (model
without interaction).

Therefore, we reject model C and move to consider model B and model A.

HR for ”Rx” in model B is 3.65 which means that hazard for the ”placebo group” is about 3.6 greater
than for the patients undergoing new treatment. Model A only contains the ”Rx” variable, which is why
it is usually called a ”crude” model – it ignores the effect of potential confounding factors. In that model
the HR for ”Rx” is 4.52 and is much greater than in model B. However, let us look not only at the point
values of the HR estimator but also at the 95% confidence interval for those estimators. The range for
”Rx” inmodel A is 8.06 (10.09minus 2.03) wide and is narrower inmodel B: 6.74 (8.34minus 1.60). That
is whymodel B gives amore precise HR estimation thanmodel A. In order tomake a final decision about
whichmodel (A or B) will be better for the evaluation of the effect of treatment (”Rx”) wewill oncemore
perform a comparative analysis of the models in the Cox PH pregression – comparing models module.
This time the likelihood ratio test yields a significant result (p<0.0001), which is the final confirmation of
the superiority ofmodel B. Thatmodel has the lowest value of information criteria (AIC=148.6, AICc=149
BIC=151.4) and high values of goodness of fit (Pseudo R2

McFadden = 0.2309, R2
Nagelkerke = 0.7662,

R2
Cox−Snell = 0.7647).
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The analysis is complemented with the presentation of the survival curves of both groups, the new
treatment one and the traditional treatment one, corrected by the influence of ”logWBC”, for model B.
In the graphwe observe the differences between the groups, which occur at particular points of survival
time. To plot such curves, after selecting Add Graph, we check the Survival Function: in subgroups ...
and then, to quickly build a graph of two curves, I choose Quick subgroups and indicate the variable
Rx. The Advanced subgroups option allows you to build any number of arbitrarily defined curves.

At the end we will evaluate the assumptions of Cox regression by analyzing the model residuals with
respect to time.

Copyright ©2010‐2023 PQStat Software – All rights reserved 498



27 SURVIVAL ANALYSIS

Copyright ©2010‐2023 PQStat Software – All rights reserved 499



27 SURVIVAL ANALYSIS

We do not observe any outliers, however, the martingale and deviance residuals become lower the
longer the time. Shoenfeld residuals have a symmetrical distribution with respect to time. In their case
the analysis of the graph can be supported with various tests which can evaluate if the points of the
residual graph are distributed in a certain pattern, e.g. a linear dependency. In order to make such an
analysis we have to copy Shoenfeld residuals, together with time, into a datasheet, and test the type
of the dependence which we are looking for. The result of such a test for each variable signifies if the
assumption of hazard proportionality by a variable in the model has been fulfilled. It has been fulfilled
if the result is statistically insignificant and it has not been fulfilled if the result is statistically significant.
As a result the variable which does not fulfill the regression assumption of the Cox proportional hazard
can be excluded from the model. In the case of the ”Log WBC” and ”Rx” variables the symmetrical
distribution of the residuals suggests the fulfillment of the assumption of hazard proportionality by
those variables. That can be confirmed by checking the correlation, e.g. Pearson’s linear or Spearman’s
monotonic, for those residuals and time.

Later we can add the sex variable to themodel. However, we have to act with caution because we know,
from various sources, that sex can have an influence on the survival function as regards leukemia, in that
survival functions can be distributed disproportionately with respect to each other along the time line.
That is why we create the Coxmodel for three variables: ”Sex”, ”Rx”, and ”logWBC”. Before interpreting
the coefficients of themodel wewill check Schonfeld residuals.Wewill present them in graphs and their
results, together with time, will be copied from the report to a new data sheet where we will check the
occurrence of Spearman’s monotonic correlation. The obtained values are p=0.0259 (for the time and
Shoenfeld residuals correlation for sex), p=0.6192 (for the time and Shoenfeld residuals correlation for
log WBC), and p=0,1490 (for the time and Shoenfeld residuals correlation for Rx) which confirms that
the assumption of hazard proportionality has not been fulfilled by the sex variable. Therefore, we will
build the Cox models separately for women andmen. For that purpose we will make the analysis twice,
with the data filter switched on. First, the filter will point to the female sex (0), second, to the male sex
(1).

For women

For men
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28 META‐ANALYSIS

The number of scientific papers being published has increased tremendously in the last decade. This
comes with a number of benefits, but it makes it difficult to keep up with the ever‐emerging new infor‐
mation. For example, if a doctor were to use a new treatment for his patients based on a scientific paper
he had read, he could make a mistake. The error could come from the fact that a whole host of other
papers have been published that contradict the effectiveness of that treatment. In order for a doctor’s
decision to have the least amount of error, he or she should readmost of the scientific papers that have
been published on the topic. As a result, the constant review of the growing body of literature would
take up so much time that there may not be enough time to treat patients. A meta‐analysis allows such
a review to be done quickly because it is the result of an extensive literature review and a statistical
summary of the findings presented therein.

Meta‐analysis in PQStat is performed using the following measures:

• Mean difference,

• d Cohen,

• g Hedges,

• Ratio of two means,

• Odds Ratio (OR),

• Relative risk (RR),

• Risk difference (RD),

• Pearson coefficient,

• AUC for ROC curve,

• Proportion.

28.1 Introduction

The most familiar image associated with meta‐analysis is the forest plot showing the results of each
study along with a summary.

Summary

Study 5

Study 4
Study 3

Study 2

Study 1

Effect size

In order for the selected literature to be summarized together, it must be consistent in description and
the measures given there must be the same.

To be used in a meta‐analysis, a scientific paper should describe:

Copyright ©2010‐2023 PQStat Software – All rights reserved 502



28 META‐ANALYSIS

Final result which is some kind of statistical measure indicating the result (effect) obtained in the pa‐
per. In fact, these can be different kinds of measures, e.g., difference between means, odds ratio,
relative risk, etc.

Standard Error i.e. SE allowing one to determine the precision of the study carried out. This precision
assigns the study weight. The smaller the error (SE), the higher the precision of a given study
and the higher the assigned weight will be, making a given study more likely to contribute to the
results of a meta‐analysis.

Group size is the number of objects on which the study was conducted.

Note!
It often happens, that a scientific paper does not contain all of the elements listed above, in which
case you should look for data in the paper from which the calculation of these measures will be
possible.

Note!
The PQstat program performs meta‐analysis related calculations on data containing: Final Effect,
Standard Error, and in some situations Group Size. It is recommended that you enter the data
for each publication in the data preparation window before performing the meta‐analysis. This is
particularly handy when a paper does not explicitly provide these three measures.

The data preparation window is opened via menu:
Advanced Statistics→Meta-analysis→Data preparation.

In the data preparation window for meta‐analysis, the researcher first provides the name of the
study being entered. This name should uniquely identify the study, as it will describe it in all
meta‐analysis results, including graphs. The desired Final result, Effect Error and Group Size are
calculated basedonmeasures extracted from the relevant scientific paper. Themeasures included
in the studies from which the final results can be calculated are shown in the table below:
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Study type Study measures Final result
Independent means Means, st. deviations a, b, c, e

Means, SE a, b, c, e
Difference, interval a
d Cohen, interval b
g Hadges, interval c
Ratio, interval e
Difference, SE a
d Cohen, SE b
g Hadges, SE c
Ratio, SE e

Dependent means Means, st. deviations a, b, c
Means, SE a, b, c

Difference, interval a
d Cohen, interval b
g Hadges, interval c

Difference, st. deviation a, b, c
Difference, SE a, b, c
d Cohen, SE b
g Hadges, SE c

Mean vs. set Mean, st. deviation a
Mean, SE a

Mean ‐ summary Mean, st. deviation d
Mean, SE d

Tables 2x2 Tables b, c, f, g, h
OR, interval b, c, f
RR, interval g
RD, interval h

d Cohen, interval b, c, f
g Hadges, interval b, c, f

OR, SE b, c, f
RR, SE g
RD, SE h

d Cohen, SE b, c, f
g Hadges, SE b, c, f

Correlation Coefficient i
Coefficient, interval i

Coefficient, SE i
ROC curve AUC, SE j

AUC, interval j
One proportion Set group size k

Set proportion k

where the individual end results are:

a ‐ Difference of means
b ‐ d Cohen
c ‐ g Hadges
d ‐ Mean
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e ‐ Ratio of means
f ‐ Odds Ratio (OR)
g ‐ Relative risk (RR)
h ‐ Risk differential (RD)
i ‐ Pearson coefficient
j ‐ AUC (ROC curve)
k ‐ Proportion

Note!
In determining the error of coefficients such as OR or RR and others based on tables, when there
exist values of zero in the tables or in determining the error of proportions when the proportion
is 0 or 1, a continuity correction using an increase factor of 0.5 is applied. The confidence interval
for proportions is determined according to the exact Clopper‐Pearson method[38].

EXAMPLE 28.1. We are interested in the effect of cigarette smoking on the risk of disease X. We
want to conduct a meta‐analysis for which the end result will be relative risk (RR). Under this
assumption, the papers selected for the meta‐analysis must be able to calculate the RR and its
error.

Step 1. Based on the description of the final result (see table above), it was found that the relative
risk (described as the score g) is possible to determine in the PQStat program in three situations,
i.e., if the RR and the confidence interval for it or the RR together with the error are given in the
scientific paper, or if the corresponding group sizes in four categories are given, i.e., a 2x2 table.

Step 2. Ten papers were selected for meta‐analysis that met the inclusion criteria and had the
potential to determine relative risk (see step 1). The needed data included in the selected papers
were:

Study 1: group sizes: (smokers and sick)=100, (smokers andnon‐sick)=73, (non‐smokers
and sick)=80, (non‐smokers and non‐sick)=70,
Study 2: group sizes: (smokers and sick)=182, (smokers andnon‐sick)=172, (non‐smokers
and sick)=180, (non‐smokers and non‐sick)=172,
Study 3: group sizes: (smokers and sick)=157, (smokers andnon‐sick)=132, (non‐smokers
and sick)=125, (non‐smokers and non‐sick)=201,
Study 4: group sizes: (smokers and sick)=19, (smokers and non‐sick)=15, (non‐smokers
and sick)=35, (non‐smokers and non‐sick)=20,
Study 5: group size: 278, RR[95%CI]=1.03[0.85‐1.25],
Study 6: group size: 560, RR[95%CI]=1.21[1.05‐1.40],
Study 7: group size: 1207, RR[95%CI]=1.04[0.93‐1.15],
Study 8: group size: 214, RR[95%CI]=1.15[0.95‐1.40],
Study 9: group size: 285, RR[95%CI]=1.36[1.03‐1.79],
Study 10: group size: 1968, RR=1.17, SE(lnRR)=0.0437,

Step 3. KUsing the study preparation window for the meta‐analysis, data was input into the data‐
sheet. The first four studies are entered by selecting tables, studies five through nine are entered
by selecting RR and range, and the last study provides all the necessary data, i.e., RR and SE. We
set Relative risk (RR) as the Final effect of the study:
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Wemove each entered study to the window on the right‐hand side . Using the OK button, we
transfer the prepared studies to the datasheet. Based on the information about each study in the
datasheet, you can proceed to perform a meta‐analysis.

P‐value, and thus statistical significance is not directly used in meta‐analysis. The same effect size may
be statistically significant in a large study and insignificant in a study based on small sample size.
Moreover, a quite small effect size may be statistically significant in a large study, and a quite
large effect size may be insignificant in a small study. This fact is related to the power of statistical
tests. When testing for statistical significance, we are testing whether an effect exists at all, i.e.,
whether it is different from zero, not whether it is large enough to translate into desired effects.
For example, the fact that a drug statistically significantly lowers blood pressure by 1mmHg will
not result in it being used, because 1mmHg is too small from a clinical perspective. Meta‐analysis
focuses on the magnitude of individual effects rather than their statistical significance. As a re‐
sult, it does not matter much whether the papers used in the meta‐analysis indicate statistical
significance of a particular effect or not.

In PQStat, statistical significance is calculated for each study given the effect ratio and the error
of that effect. This is an asymptotic approach, based on a normal distribution and dedicated to
large samples. If a different test was used to check statistical significance in the cited study, the
results obtained may differ slightly.

28.2 Summary effect

As a result of the meta‐analysis, its most desirable element is to summarize the collected studies, i.e.,
to report the overall effect,M . Such a summary can be done in two ways, by designating a fixed effect
or a random effect.

Fixed effect
In calculating the fixed effect, we assume that all studies in the meta‐analysis share one common
true effect. Thus, if each study involved the same population, e.g., the same country, then to
summarize the meta‐analysis with a fixed effect we assume that the true (population) effect will
be the same in each of these studies. Consequently, all factors that could disturb the size of this
effect are the same. For example, if the effect obtained can be affected by the age or gender of
the subjects, then these factors are similar in each study. Thus, differences in the obtained effects
for individual studies are due only to sampling error (the inherent error of each study) ‐ that is,
the size of SE.
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The fixed effect estimates the population effect – the true effect for each study.

The confidence interval around the fixed effect (the width of the rhombus in the forest plot)
depends only on specific SE.

Random effect
In calculating the random effect, we assume that each study represents a slightly different popu‐
lation, so that the true (population) effect will be different for each population. Thus, if each study
involved a different country, then in order to summarize the meta‐analysis with a random effect,
we assume that some factors that could distort the magnitude of the effect may have different
magnitudes across countries. For example, if the effect (e.g., the average increase in fertility) can
be affected by the education level of the respondents or the wealth of a country, and these co‐
untries differ in these factors, then the true effect (the average increase in fertility) will be slightly
different in each of these countries. Thus, the differences in the obtained effects for each study
are due to sampling error (the error within each study) – that is, the size of SE, and the diffe‐
rences between the study populations (the variance between the studies ‐ the heterogeneity of
the studies) – i.e., T 2. This heterogeneity cannot be too large, too much variance between study
populations indicates no basis for a overall summary.

The random effect estimates a weighted mean of the true (population) effects of each study.

The confidence interval around the variable effect (the width of the rhombus in the forest plot)
depends on individual SE and on T 2.

Confidence interval vs. prediction interval

95% confidence interval (width of the rhombus in the forest plot) ‐ means that in 95
percent of cases of such meta‐analyses the overall random effect will fall into the in‐
terval determined by the rhombus.

95% prediction interval ‐ means that 95 percent of the time the true (population) ef‐
fect of the new study will fall into the designated interval.

The meta‐analysis settings window is opened menu:
Advanced Statistics→Meta-analysis→Meta-analysis, summary.
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In this window, depending on the Final Effect selected, you can summarize the meta‐analysis and per‐
form basic analyses to check its assumptions such as heterogeneity, publication bias (sensitivity testing,
asymmetry) and perform a cumulative meta‐analysis.
EXAMPLE 28.2. (MetaAnalysisRR.pqs file)
The risk of disease X for smokers and non‐smokers has been studied. Some research papers indicated
that the risk of disease Xwas higher for smokers, while some papers did not prove such a relationship. A
meta‐analysis was planned to determine whether cigarette smoking affects the occurrence of disease
X. A thorough review of the literature on this topic was performed, and based on this, 10 scientific
papers were selected for meta‐analysis. These papers had data on the basis of which it was possible to
calculate the relative risk (i.e. the risk of the disease for smokers in relation to the risk of the disease for
non‐smokers) and it was possible to establish the error with which the given relative risk is burdened
(i.e. the precision of the given study). Data were prepared for meta‐analysis and stored in a file.

Because the papers included in themeta‐analysis were fromdifferent locations and included slightly
different populations, the summary was chosen using random effect. As the final effect, relative risk
was selected and the results were presented on a forest plot.
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The results of four studies (studies 3, 6, 9, and 10) indicate a significantly higher risk of disease for
smokers. The overall result of the meta‐analysis conducted is also statistically significant and confirms
the same effect. The derived relative risk for the overall effect along with the 95 percent confidence
interval is above the value of one: RR[95%CI]=1.13[1.05‐1.22]. Unfortunately, the prediction interval
for the variable effect is wider: [0.93‐1.38], which means that in 95% of the cases, the true population
relative risk obtained in subsequent studies could be either greater or less than one.
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Note!
Before interpreting the results, it is important to check that the assumptions of the meta‐analysis are
met. In this case, we should consider excluding the third study (see sensitivity analysis , asymmetry
analysis, cumulative meta‐analysis and the assumption of heterogeneity).

28.3 Weights of individual studies

The weight wi of the study depends on the observed variability.

For the fixed effect, the variability is due only to sampling error (error within each study) ‐ that is, the
size of SE:

wi =
1

SE2

For a randomeffect, variability is due to sampling error (error within each study) ‐ that is, themagnitude
of SE, and differences between studies – that is, the observed variance T 2:

wi =
1

SE2 + T 2

Based on the weights assigned to each study, the share of a given study in the entire analysis is deter‐
mined. This is the percentage that the weight of a given study represents in relation to the total weight
of all included studies.

28.4 Heterogeneity testing

It is difficult to expect every study to end up with exactly the same effect size. Naturally, the results
obtained in different papers will be somewhat different. The study of heterogeneity is intended to de‐
termine to what extent emerging differences between the results obtained in different papers affect
the overall effect constructed in the meta‐analysis. The overall effect summarizes well the results ob‐
tained in the different papers if the differences between the different effects are natural i.e. not large.
Large differences in observed effects may indicate heterogeneity of studies and the need to separate
more homogeneous subgroups, e.g., divide the collected papers into several subgroups with respect
to an additional factor. For example: a given drug has a different effect on younger and older people,
so in studies based on data from mainly young people, the effect may differ significantly from studies
conducted on older people. Dividing the collected papers into more homogenous subgroups will allow
for a good estimation of the overall effect for each of these subgroups separately.

Heterogeneity testing is designed to check whether the variability between studies is equal to zero.

Hypotheses:

H0 : τ2 = 0,
H1 : τ2 ̸= 0,

where:
τ2 – is the variance of the true (population) effects of each study.

The test statistic is of the form:
Q = T 2W + k − 1

where:
T 2 – is the variance of the observed effects,
W – a factor calculated from the weights assigned to each study,
k – number of studies.
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The statistic has asymptotically (for large sample) chi‐squared with the degrees of freedom calculated
by the formula: df = k − 1.

The p value, designated on the basis of the test statistic, is compared with the significance level α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

Note

• If the result is statistically significant – this is a strong suggestion to abandon the overall summary
of all collected studies.

• If the result obtained is not statistically significant – we can summarize the study with the overall
effect. At the same time, it is suggested to summarize with a random effect – according to the
following explanation.

Rationale for choosing a random effect:

The overall random effect test takes into account the variability between tests (T 2), while the
fixed overall effect does not take this variability into account. However, if T 2 is small, the result of
the fixed effect model will be close to that of the random effect model, and when T 2 = 0, both
models will produce exactly the same result.

Additional measures describing heterogeneity are the coefficients I2 andH2:

I2 =
H2 − 1

H2
,H2 =

Q

k − 1
.

The I2 coefficient indicates the percentage of the observed variance that results from the true diffe‐
rence in the magnitude of the effects under study (graphically, it reflects the extent of overlap between
the confidence intervals of the individual studies). Because it falls between 0% and 100%, it is subject to
simple interpretation and is readily used. If I2 = 0, then all of the observed variance in effect sizes is ”
false,” so if a value of 0 is found in the confidence interval drawn around the I2 coefficient, the resulting
variance can be considered statistically insignificant. On the other hand, the closer the value of I2 is to
100%, the more one should consider abandoning the overall summary of the study. It is assumed that
I2 ≈ 25% indicates weak, I2 ≈ 50% moderate, and I2 ≈ 75% strong heterogeneity among studies.
The coefficientH2, on the other hand, is considered with respect to a value of 1. If the confidence inte‐
rval forH2 contains a value of 1, then the variance obtained can be considered statistically insignificant,
and the higher the value ofH2, the greater the heterogeneity of the study.

] Example (28.2) cont. (MetaAnalysisRR.pqs file)When examining the effect of cigarette smoking on the
onset of disease X, the heterogeneity assumption of the study was tested. For this purpose, the option
Heterogeneity test was selected in the analysis window..
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A statistically significant result of Q statistic was obtained (p=0.0428). The variance of the observed
effects is non‐zero (T2=0.0058), and the coefficient I2=48.27%, indicates moderate heterogeneity be‐
tween studies. Only the confidence interval for the H2 coefficient finds insignificant variability between
studies (the range for this coefficient is [0.93‐4.00]). With these results in mind, it is important to con‐
sider whether the collected papers can be summarized by one overall result (shared relative risk) or
whether it is worthwhile to determine a more homogeneous group of papers and perform the analysis
again.

28.5 Sensitivity testing

The overall effect of a study may change depending on which studies we include and which we exc‐
lude from the analysis. It is the responsibility of the researcher to check how sensitive the analysis is
to changes in study selection criteria. Checking for sensitivity helps determine the changes in overall
effect resulting from removing a particular study. The studies should be close enough that removing
one of them does not completely change the interpretation of the overall effect.

The assigned value remaining contribution defines the percentage that the total weight of the rema‐
ining studies in the analysis represents when a given study is excluded. In contrast, the precision chenge
indicates how the precision of the overall effect (the width of the confidence interval) will change when
a given study is excluded from the analysis.

A good illustration of the sensitivity analysis is a forest plot of the effect size and a plot of the change in
precision, with each study excluded.

]
Example (28.2) c.d. (MetaAnalysisRR.pqs file) When examining the effect of cigarette smoking on

the onset of disease X, the sensitivity of the analysis was checked to exclude individual studies. To do
this, the Sensitivity option was selected in the analysis window and forest plot (sensitivity) and bar
plot (sensitivity) were selected..

The overall relative risk, however, not including particular, indicated studies, still remain statistically
significant. The only caveat is study 3. When it is excluded, the precision of the summary obtained
increases. The confidence interval for the overall effect is then narrower by about 18%.
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Analysis of the plots leads to the same conclusion. The narrowest interval and themost beneficial chan‐
ge in precision will be obtained when test 3 is excluded.

28.6 Asymmetry testing

Symmetry in the effects obtained is usually indicative of the absence of publication bias, but it sho‐
uld be kept in mind that many objective factors can disrupt symmetry, e.g., studies with statistically
insignificant effects or small studies are often not published, making it much more difficult to reach
such results. At the same time, there are no sufficiently comprehensive and universal statistical tools
for asymmetry detection. As a result, a significant part of meta‐analyses is published despite the dia‐
gnosed asymmetry. Such studies, however, require good justification of such a procedure.

Funnel plot
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A standard way to test for publication bias in the form of asymmetry is a funnel plot, showing
the relations between study size (Y axis) and summary effect size (X axis). It is assumed that large
studies (placed at the top of the graph) in a correctly selected set, are located close together and
define the center of the funnel, while smaller studies are located lower and are more diverse and
symmetrically distributed. Instead of the study size on the Y‐axis, the effect error for a given study
can be shown, which is better than showing the study size alone. This is because the effect error
is a measure that indicates the precision of the study and also carries information about its size.

Egger’s test
Since the interpretation of a funnel plot is always subjective, it may be helpful to use the Egger
coefficient (Egger 1997[53]), the interception of the fitted regression line. This coefficient is ba‐
sed on the correlation between the inverse of the standard error and the ratio of the effect size
to its error. The further away from 0 the value of the coefficient, the greater the asymmetry.
The direction of the coefficient determines the type of asymmetry: a positive value along with a
positive confidence interval for it indicates an effect size that is too high in small studies and a
negative value along with a negative confidence interval indicates an effect size that is too low in
small studies.
Note
Egger’s test should only be used when there is a large variation in study sizes and the occurrence
of a medium‐sized study.
Note
With few studies (small number of k), it is difficult to reach a significant result despite the appa‐
rent asymmetry.

Hypotheses:

H0 : b = 0,
H1 : b ̸= 0,

where:
b – intercept in Egger’s regression equation.

The test statistic is in the form of:
t =

b

SE(b)

where:
SE(b) – standard error of intercept.
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The test statistic has t‐Student distribution with k − 2 degrees of freedom.
The p value, designated on the basis of the test statistic, is compared with the significance level
α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

Testing the ”Fail‐safe” number

Rosenthal’s Nfs ‐ The ”fail‐safe” number described by Rosenthal (1979)[137] specifies the number of
papers not indicating an effect (e.g., difference in means equal to 0, odds ratio equal to 1, etc.)
that is needed to reduce the overall effect from statistically significant to statistically insignificant.

Nfs =

(∑k
i=1 Zi

)2
Z2
c

− k

where:
Zi – the value of the test statistic (with normal distribution) of a given test,
Zc – the critical value of the normal distribution for a given level of significance,
k – number of studies in the meta‐analysis.

Rosenthal (1984)[126] defined the number of papers being the cutoff point as 5k + 10. By de‐
termining the quotient of Nfs and the cutoff point, we obtain coefficient(fs). According to Ro‐
senthal’s interpretation, if coefficient(fs) is greater than 1, the probability of publication bias is
minimal.

Orwin’s Nfs ‐ the ”fail‐safe” number described by Orwin (1983) determines the number of papers with
the average effect indicated by the researcherMfs that is needed to reduce the overall effect to
the desired sizeMd indicated by the researcher.

Nfs = k
M −Md

Md −Mfs

where:
M – the overall effect obtained in the meta‐analysis.

Example (28.2) c.d. (MetaAnalysisRR.pqs file) When examining the effect of cigarette smoking on
the onset of disease X, the assumptionof study asymmetry, and therefore publicationbias,was checked.
To do this, the option Asymmetry was selected in the analysis window and Funnel plot was selected.
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Egger’s test result are not statistically significant (p=0.9137), indicating no publication bias.

The points representing each study are symmetrically distributed in the funnel plot. Admittedly, one
study is outside the boundary of the triangle (Study 3), but it is close to its edges. On the basis of the
diagram we also have no fundamental objections to the choice of studies, the only concern being the
third study.

The number of ”fail‐safe” papers determined by Rosenthal’s method is large and is at 72. Thus, if the
overall effect (relative risk shared by all studies) were to be statistically insignificant (cigarette smoking
would have no effect on the risk of disease X), 72 more papers with a relative risk of one would have to
be included in the pooled papers. The obtained effect can be therefore considered stable, as it will not
be easy (with a small number of papers) to undermine the obtained effect.

The resulting overall relative risk is RR=1.13. Using Orwin’s method it was checked how many papers
with relative risk equal to 1.11 it would take for the overall relative risk to fall to 1.12. The result was 11
papers. On the other hand, by reducing the size of the relative risk from 1.11 to 1.10 only 5 papers are
needed for the overall relative risk to be 1.12.
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28.7 Cumulative meta‐analysis

The typical purpose of conducting a cumulative meta‐analysis is to show how the effect has changed
since the last meta‐analysis on a topic was conducted/published, or how it has changed over the years.
Then chronologically (according to the timeline)more studies are added and the overall effect is calcula‐
ted each time. Equally important is the cumulative analysis in a study of how the overall effect changes
depending on the magnitude of the impact of a selected additional factor. The studies are then sorted
according to the magnitude of that factor and the for successively added studies, a cumulative overall
effect is calculated.

Depending on the purpose of the cumulation, the variable by which the individual studies will be sorted
should be chosen, i.e., the order in which the studies are added to themeta‐analysis summary. This can
be any numerical variable.

The assigned value of Cumulative contribution defines the percentage that is represented by the total
weight of the included studies in the analysis i.e., the given study and the studies preceding it. In con‐
trast, Precision change indicates how the precision of the overall effect (the width of the confidence
interval) will change when a given study is included with the studies preceding it.

A good illustration of the cumulative analysis is a forest plot of the effect size and a plot of the change
in precision, with each study included.

Example (28.2) cont. (MetaAnalyzisRR.pqs file) By investigating the effect of cigarette smoking on
the onset of disease X, we examined how the results evolved over time. To do this, the cumulative
meta-analysis was selected in the analysis window as well as the variable by which subsequent papers
would be included in the meta‐analysis, and forest plot (cumulative) and bar plot (cumulative) were
specified.

As newpaperswere added, the resulting overall effect gained strength, and its significancewas obtained
by adding Study 10 to the earlier papers, and then subsequent studies as well. In general, the addition
of more papers increased the precision of the derived relative risk, except when Study 3 was added.
The confidence interval of the overall relative risk then increased by 79.15%. We see this effect in the
table and in the accompanying charts. As a result, one should consider excluding Study 3 from the
meta‐analysis.
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28.8 Group comparison

There are situations in which the data collected are of the same effect, performed on the same po‐
pulation, but under slightly different conditions. Suppose that part of the study was performed under
condition A and part under condition B. Then it may be interesting to compare the overall effects ob‐
tained for each group. Demonstrating differences between overall effects may be the main goal of a
meta‐analysis, and then it is inadvisable to compound both subgroups simultaneously with one overall
effect. However, if the researcher realizes that the studies were conducted under different conditions,
but it seems appropriate to summarize all the studies together, then showing the absence of statisti‐
cally (or clinically) significant differences, the researcher can make a joint summary taking into account
this division into subgroups A and B, i.e. determine a overall summary adjusted for different conditions
of the experiment. For example, Country A has a slightly different climate than Country B. We have a
number of studies from country A and a number of studies from country B. If our study population is
the vegetation of these two countries, we can test whether the climatic conditions affect the obtained
study effects for each country. A comparative analysis of the subgroups thus determined will allow us
to assess whether climate has amajor influence on the results obtained or not, and whether the results
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of the studies covering these two countries can indeed be summarized in one overall effect, or whether
we should determine separate summaries for each country. Another example can be a situation where
some of the studies are studies in which randomization was performed, but in some of them we do
not have full randomization, then we can divide the studies into subgroups to then check whether the
studies without randomization give similar results to the studies with randomization in order to include
them in further, combined analysis.

Examination of group heterogeneity
We can compare groups by choosing as overall effect: fixed effect, random effect – separate T 2

or random effect – pooled T 2, where T 2 is the variance of the observed effects.

• Fixed effect is chosen when we assume that studies within each group share one common
true (i.e., population) effect.

• Random effect (separate T 2) is chosen whenwe assume that the studies within each group
represent slightly different populations, and the groups differ in variance between studies.

• Random effect (pooled T 2) is chosen when we assume that the studies within each gro‐
up represent slightly different populations, but the variance between studies is the same,
regardless of the group to which they belong.

The main goal is to compare groups, that is, to determine whether the groups being compared
differ in their true (i.e., population) overall effect. In practice, this is to test whether the variance
of group overall effects is zero, i.e., to test the heterogeneity of the groups. For a description
and interpretation of the results of heterogeneity analysis, see chapter Heterogeneity testing,
except that in the case of group comparisons, heterogeneity refers to the compound effects of
the groups being compared, not the individual studies, and the outcome depends on the overall
effect chosen.

Hypotheses:

H0 : τ2 = 0,
H1 : τ2 ̸= 0,

where:
τ2 – is the variance of the true (population) summary effects of the groups being com‐
pared.

The p value, designated on the basis of the test statistic, is compared with the significance level
α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

If the result is statistically significant (a score of Q‐statistic, I2 coefficient orH2 coefficient), this
is a strong suggestion to drop the overall summary of the groups being compared.

Examining heterogeneity in groups
An additional option of the analysis is the possibility to analyze each group separately for hete‐
rogeneity, as described in Heterogeneity testing. The results obtained (in particular, the variance
T 2) make it easier to decide how to compare the groups, i.e., whether to choose a random effect
(separate T 2) or a random effect (pooled T 2).
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Joint summary of the groups
In a situation where, based on the results of the group comparison, the differences obtained
between the overall effects of the groups are small and insignificant, a joint summary of the
groups can be performed. The summation is done in correction for the division into the indicated
groups. For example, if we split the study based on the different conditions of the experiment
conducted, then the joint summary will be done in correction for the different conditions of the
experiment. The result of joint summation (overall efect of both grous) depends on the observed
differences (on the variation between studies and between groups) i.e. on the choice of ovearall
effect (whether it is fixed or random (separate T 2) or random (pooled T 2)).

A good illustration of the joint (ovearall) summary of the groups in the meta‐analysis is a forest
plot showing the results of each study with each group’s summary and the joint summary of the
groups.

ANOVA comparison
ANOVA comparison is an additional option for comparing groups. It is a slightly different me‐
thod of comparison than comparison by testing heterogeneity of groups (based on a different
mathematical model). Both methods, however, give overlapping results as to the comparison of
groups. In case of comparison of groups by ANOVAmethod the observed variance is broken down
into between‐group variance and within‐group variance. The within‐group variance is then bro‐
ken down into the variance of each group separately. As a result, the following Q statistics are
determined:

• TheQ statistic (group 1) – examines that part of the total variance that relates to group one,
i.e., the variance between studies located within group one,

• TheQ statistic (group 2) – examines that part of the total variance that relates to the second
group, i.e. the variance between studies within the second group,

• ...
• The Q statistic (group g) – examines that part of the total variance that relates to the last

group, i.e., the variance between studies within the last group,
• TheQ statistic (within groups) =Q (group 1) +Q (group 2) + ... +Q (group g) ‐ examines that

part of the total variance that relates to the inside of the individual groups, i.e., the variance
of the within‐group tests,

• The Q statistic (between groups) ‐ examines that part of the total variance that relates to
differences between groups, i.e., the between‐group variance (same result as examining
the heterogeneity of groups) ,

• TheQ statistic (total) ‐ examines the variance between all studies.

Each of the above Q statistics has a χ2 distribution with the appropriate number of degrees of
freedom.

The window with settings of group comparison for meta‐analysis is opened via menu: Advanced
Statistics→Meta-analysis→Meta-analysis, comparing groups.
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EXAMPLE 28.3. (MetaAnalysisRR.pqs file)
The risk of disease X was examined for smokers and non‐smokers. A meta‐analysis was conducted to
determine whether smoking duration affects the onset of disease X. A thorough review of the literature
on this topic was carried out, and 17 studies were identified that had a description of the relative risk
and its error (i.e. the precision of the study). Because the studies involved different smoking times, 3
groups of studies were identified:
(1) studies on people who have been smoking for more than 10 years,
(2) studies on people who have been smoking for 5 to 10 years,
(3) studies on people who have been smoking for less than 5 years.
In addition, a subdivision was made between the two different conditions of the studies (different inc‐
lusion/exclusion criteria of subjects). Data were prepared for meta‐analysis and stored in a file.
The purpose of conducting the meta‐analysis was to compare age groups. In addition, it was exami‐
ned whether the different conditions of the experiment translated into differences in the relative risk
obtained.

Because the papers included in themeta‐analysis were fromdifferent locations and included slightly
different populations, the summary was made by selecting random effect (separate T2). As the final
effect, relative risk was selected and the results were presented on a forest plot.
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The groups are statistically significantly different (p=0.0092), which we observe not only based on the
test of heterogeneity, but also on the coefficient of H2 (the coefficient alongwith the confidence interval
is above the value of one) and I2 (78 is high heterogeneity). Therefore, the collected papers will not be
summarized by a overall effect but only by a separate summary of each group.

The forest plot also shows a summary of each group and does not contain a joint summary of the groups.
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In addition, homogeneity within each group was checked to ascertain the feasibility of summarizing
them separately.
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In contrast, the results of the comparison concerning the different study conditions indicate that there
is no significant effect of these conditions on the overall effect. In this case, it is possible to calculate
a joint overall effect when correcting for the different test conditions, i.e., a joint summary of the two
groups.
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28.9 Meta‐regression

Meta‐regression analysis is conducted in an analogous manner to the regression analysis described in
the sectionMultiple Regression. In the case of meta‐regression, the study objects are the individual stu‐
dies, their results (e.g., odds ratios, relative risks, differences in means) constitute the dependent varia‐
ble Y i.e., the explained variable, and the additional conditions for conducting these studies constitute
the independent variables (X1,X2, . . .,Xk) i.e., the explanatory variables. As in traditional regression
models, the independent variables may interact and those described by a nominal scale may be subject
to special coding (for more information, see Preparation of the variables for analysis in multivariatemo‐
dels). The number of independent variables should be small, less than the number of papers on which
the study is based on (n ≥ k + 1).

We can perform meta‐regression by choosing a fixed effect or a random effect.

• Fixed effect is chosen when we assume that the studies represent one common true effect such
that all factors that could perturb the magnitude of this effect are the same except for the factors
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tested as independent variables in the model (X1, X2, . . ., Xk). This is a situation that occurs
very rarely in real research because it requires fully controlled conditions, which is almost impos‐
sible in different studies, conducted in different locations and by different researchers. The use
of fixed effect would be justified, for example, in a situation when all the tests are carried out at
the same location, on the same population, changing only those conditions that are described by
the characteristic being tested. For example, if we wanted to test the effect of changing tempe‐
rature on changing the relative risk of disease described in each study, then all studies should be
conducted on the same population under exactly the same conditions except for the change in
temperature, which is the independent variableX in the model.

• Random effect is chosen when we assume that studies may represent slightly different popula‐
tions, i.e., factors that could perturb themagnitude of the effect under study are not described in
all papers (they can be assumed to be similar, but not necessarily exactly the same). Each paper
provides themagnitudes of the factors we are interested in, which are involved in model building
as independent variables (X1,X2, . . .,Xk). The use of a random effect is common because indi‐
vidual studies are usually conducted at different locations under slightly different conditions, the
variability of interest is only in the conditions that describe the factors given in the study, e.g.,
temperature, which will be the independent variableX in the model.

Model verification

• Statistical significance of individual variables in the model.

Based on the coefficient and its error, we can conclude whether the independent variable for
which this coefficient was estimated has a significant effect on the final effect. For this purpose,
we test the hypotheses:

H0 : βi = 0,
H1 : βi ̸= 0.

Calculate the test statistic using the formula:

Z =
bi

SEbi

Test statistics has the normal distribution.
The p value, designated on the basis of the test statistic, is compared with the significance level
α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

• Quality of thebuiltmodelof a linearmultivariate regression canbe assessedby severalmeasures.

– CoefficientR2 – is ameasure ofmodel fit. It expresses the percentage of variability between
study effects explained by the model.
The value of this coefficient is in the range < 0; 1 >, where 1 means a perfect fit of the
model, 0 – a complete lack of fit. In determining it we use the following equation:

R2 = T 2
(modelu) + T 2

(total),

where:
T 2
(modelu) – variance between studies explained by the model,

T 2
(total) – total variance between studies.
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– Coefficient I2 – determines the percentage of the observed variance that results from the
true difference in the magnitude of the effects under study.

Note
For a detailed representation of the variance described by the coefficients, see chapter Testing
heterogeneity

• Statistical significance of all variables in the model
The primary tool for estimating the significance of all variables in the model is an ANOVA that
determinesQ (of the model).

H0 : all βi = 0,
H1 : exists βi ̸= 0.

Using the ANOVA approach, the observed variance between tests is broken into the variance
explained by themodel and the variance of the residual (not explained by themodel). As a result,
the followingQ statistics are determined:

– The Q statistic (of the residuals) ‐ examines the portion of the total variance that is not
explained by the model,

– TheQ statistic (of the model) ‐ examines the portion of the total variance that is explained
by the model,

– TheQ statistic (total) ‐ examines the variance between all studies.

Each of the above Q statistics has χ2 distribution with the appropriate number of degrees of
freedom.

The p value, designated on the basis of the test statistic, is compared with the significance level
α:

if p ≤ α =⇒ rejectH0 and acceptH1,
if p > α =⇒ there is no reason to rejectH0.

The window with settings of group comparison for meta‐analysis is opened via menu: Advanced Stati-
stics→Meta-analysis→Meta-regression.
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Example (28.3) cont. (MetaAnalysisRR.pqs file) The risk of disease X was examined for smokers
and non‐smokers. A meta‐analysis comparing groups of studies was conducted to determine whether
the number of years of smoking affected the onset of disease X and whether different conditions of the
experiment resulted in different relative risks. On the basis of the comparison of the groups of studies, it
was possible to establish that the last group (the group of smokers who have been smoking the longest,
i.e. for more than 10 years) shows an association between smoking and the onset of disease X. On
the other hand, for the groups with shorter smoking duration, no significant effect could be obtained.
However, it was observed that the effect systematically increased with increasing years of smoking. To
test the hypothesis of a significant increase in the risk of disease X with increasing years of smoking,
two regression models were constructed. In the first model, the grouping variable Years of smoking
was treated as a continuous variable. In the second model, it was determined that the variable Years
of smoking would be treated as a categorical (dummy) variable with the reference group smoking less
than 5 years. Data were prepared for meta‐regression and stored in a file.

Because the papers included in the meta‐analysis were from different locations and included slightly
different populations, the meta‐regression was performed by selecting random effect. The relative risk
was selected as the final effect, and the results were presented in the graph.

Both models confirmed a significant association between the duration of smoking and the magnitude
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of the relative risk of disease X. In the first model, the logarithm of the relative risk of disease X incre‐
ased by 0.0614 with increasing time of smoking (moving to the subsequent group of years of smoking).
Analysis of the results of the secondmodel leads to similar conclusions. In this case, the results are con‐
sidered for the group of smokers smoking less than 5 years. The logarithm of relative risk for smokers
between 5 and 10 years increases by 0.0666 (relative to smokers younger than 5 years), and for smokers
older than 10 years it increases by 0.1218 (relative to smokers younger than 5 years).

Since part of the study was conducted according to other criteria (under different conditions) the ob‐
tained results of both models were corrected for different conditions of the study.

The correction performed did not change the underlying trend, and thus it can be concluded that the
risk of disease X increases with years of smoking regardless of what methodology (inclusion/exclusion
criteria of subjects) was used to conduct the study. The resulting relation for the first model, assuming
that the study was conducted under condition ”a” (indicated as first conditions) is shown in the graph.
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Reliability analysis is usually associated with the complex scale construction, in particular summary sca‐
les (these consist of many individual items). Reliability analysis, associated as its internal consistency,
informs us to what extent a particular scale measures what it should measure. In other words, to what
extend the scale items measure the things that are measured by the whole scale.

When every scale itemmeasures the same construct (the correlation between the items should be high)
we can call it reliable scale. This assumption can be checked by calculating the matrix of the Pearson’s
correlation coefficient. Many measures of concordance can be used in reliability analysis. However, the
most popular technique is the α‐Cronbach coefficient and so‐called split‐half reliability.

Cronbach’s α coefficient was named for the first time in 1951[49], by Cronbach. It measures the pro‐
portion of single item variances a and the whole scale variance (items sum). It is calculated ac‐
cording to the following formula:

αC =
k

k − 1

(
1−

∑k
i=1 sd

2
i

sd2t

)
,

where:
k – number of scale items,
sd2i – variance of i item,
sd2t – variance of items sum.

Standardised reliability coefficient αstandard is calculated according to the following formula:

αstandard =
krp

1 + (k − 1)rp
,

where:
rp – mean of all the Pearson’s correlation coefficients for (k(k − 1)/2) scale items.

Alpha can take on any value less than or equal to 1, including negative values, although only
positive values make sense. If all scale items are reliable, the reliability coefficient is 1.

There are some values that help in an assessesment of particular scale items usefulness:

• the value of αC coefficient calculated after removing a particular scale item,
• the value of standard deviation of a scale calculated after removing a particular scale item,
• mean value of a scale calculated after removing a particular scale item,
• the Pearson’s correlation coefficients between a particular item and the sum of other items.

Split‐half reliability
Split‐half reliability is a random scale item division into 2 halves and an analysis of the halves
correlation. It is carried out by the Spearman‐Brown split‐half reliability coefficient, published
independently by Spearman (1910)[154] and Brown (1910)[33]:

rSH =
2r∗p

1 + r∗p
,

where:
r∗p – the Pearson’s correlation coefficient between halves of a scale.
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If two halves, randomly selected, are ideally correlated: rSH = 1.

A formula for the split‐half reliability coefficient proposed by Guttman (1945)[71]:

rSHG = 2

(
1− sd2t1 + sd2t2

sd2t

)
,

where:
sd2t1, sd2t2 – variance of the first and the second half of a scale,
sd2t – variance of the sum of all scales items.

Note
The scale is realiable if the scales reliability coefficients (αC , αstandard, rSH , rSHG) are larger than 0.6
and smaller than 1.

Standard error of measurement is calculated for the reliable scale, according to the following formula:

SEM = sdt
√
1− αC – for the Cronbach’s alpha coefficient of reliability

or
SEM = sdt

√
1− rSH – for the split‐half reliability coefficient

The settings window with the Cronbach’s alpha/Split-half can be opened in Statistics menu →Scale
reliability.

EXAMPLE 29.1. (scale.pqs file)
A ”competence scale”, created in some company, enables an assessment of the usefulness of future
employees. Apart from participation in a job interview, candidates fill in the questionnaire that includes
the ”competence scale” questions. There are 7 questions in the scale. For each question, one can get 1
‐ 5 points, where 1 ‐ the lowest mark, 5 ‐ the highest mark. The maximum score of the questionnaire is
35. In the table, there are scores obtained by 24 candidates.

Copyright ©2010‐2023 PQStat Software – All rights reserved 532



29 RELIABILITY ANALYSIS

Lp KK1 KK2 KK3 KK4 KK5 KK6 KK7 SUMA
1 3 3 5 5 5 5 1 27
2 5 4 4 3 3 5 1 25
3 5 5 3 5 3 2 1 24
4 1 2 5 5 5 5 2 25
5 4 5 5 5 5 5 1 30
6 4 4 5 5 5 5 3 31
7 1 1 5 5 5 5 2 24
8 5 5 5 5 3 5 3 31
9 3 2 2 5 4 2 1 19
10 3 4 3 4 4 2 1 21
11 4 4 3 4 4 4 4 27
12 1 1 3 4 1 1 3 16
13 3 3 4 5 5 5 1 26
14 4 5 5 5 5 5 2 31
15 1 4 4 4 1 4 4 22
16 1 4 5 5 5 5 1 26
17 5 5 5 5 5 5 2 32
18 5 3 5 5 3 5 4 30
19 1 1 2 2 2 1 4 13
20 5 5 5 5 5 5 5 35
21 5 3 5 5 5 5 1 29
22 5 5 5 5 5 1 5 31
23 2 1 5 3 2 4 1 18
24 5 5 5 5 5 5 5 35

For checking the accuracy of the ”competence scale”, the reliability should be analysed.
The correlation matrix indicates that the last item is least correlated with the other items. Thus, it is
suspected that the item does not measure the same construct as the others.

The competence scale turned out to be a reliable scale. Cronbach alpha coefficient is 0.7368, and mean
of all the Pearson’s correlation coefficients is 0.3185.
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Amore precised analysis of each item indicates that, except the last one, they all influence scale reliabili‐
ty in a similar way. Correlation between the KK7 item and the other scales items, is the weakest: 0.0270.
Removing the KK7 item from the scale, the Cronbach alpha coefficient would increase to 0.8036.

Similar conclusion can be drawn on the basis of split‐half reliability analysis, carried out on the items
randomly divided into 2 halves (KK1, KK3, KK5) (KK2, KK4, KK6, KK7).
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Spearman‐Brown split‐half reliability Coefficient is 0.8578. Guttman split‐half reliability coefficient is
0.8565. The halves are well correlated – the correlation coefficient is 0.7509. However, the value of
Cronbach alpha coefficient is too low for the second half (0.416958). This half includes the KK7 item,
which shows a weak correlation with the other scale items. Removing the item and repeating the ana‐
lysis, all the items are really high and reliable.
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30 Test summaries

To speed up the work, we can perform individual tests in sets. The quantitative data will be able to be
further described by means, medians, etc., and the qualitative data by counts and percentages.

The settingswindowwith theTest summaries can be opened in Stistics→Summaries→Test summaries
and then the selected group of analyses.

At our disposal we have:

1. Comparison of two dependent groups:

• The t‐test for dependent groups
• The Wilcoxon test (matched‐pairs)
• The Bowker‐McNemar test
• Normality of distribution test Kołmogorov‐Smirnov (or another one suggested by the user)
• and others ...

2. Comparison of two independent groups:

• The t‐test for independent groups
• The Mann‐Whitney U test
• The Chi‐square tests, Fisher exact, OR/RR
• Normality of distribution test Kołmogorov‐Smirnov (or another one suggested by the user)
• and others ...

3. Korelację:

• Pearson linear correlation
• Spearman’s monotonic correlation
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• The Chi‐square tests, Fisher exact, correlation co.
• Normality of distribution test Kołmogorov‐Smirnov (or another one suggested by the user)
• and others ...

In the program, for each of the analyzed variables, depending on whether they are quantitative or
qualitative, we can return results:

• selected tests ‐ automatically according to the rule described below returned in the table report;

• all tests and accompanying coefficients and measures regardless of whether the minimum con‐
ditions for their use are met.

Notes on the program’s automatic test selection
Note 1!
If the user does not describe each variable with the appropriate scales before analysis, the quantitative
data will be treated as an interval scale, and the qualitative data as a nominal scale.

Note 2!
Testing the normality of the distribution is based on the results of the normality test selected by the
user when setting the descriptive statistics.

Note 3!
If the user chooses not to indicate tests that assess the normality of the distribution in the window of
these statistics, then it will be checked based on the Kolmogorov‐Smirnov test. The analyses we propo‐
se are robust to small deviations from the normal distribution, and the Kolmogorov‐Smirnov test is the
most conservative among the available tests, by which we show the non‐normality of the distribution
only when the tested distribution differs greatly from the normal distribution. In this situation, we test
the normality of the distribution (1) for the comparison of two independent groups based on the data in
each group, (2) for the comparison of two dependent groups based on the difference inmeasurements,
(3) for correlation based on the model residuals.

EXAMPLE 30.1. (Summaries.pqs file)
We want to make an automatic comparison between two independent groups: chronic patients and
acute patients. We make the comparison based on the data described on the interval scale: Chol, LDL,
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HDL, TG, based on the ordinal feature BMI, and nominal data: Treatment, Estradiol 1, Estradiol 2, Estra‐
diol 3. To do this, we choose the menu Summaries → Test summaries [two independent groups] and
select the grouping variable: Treatment, then we select interval data (in the quantitative variables sec‐
tion) and nominal and ordinal data (in the qualitative variables section). We select the option Selected
test and perform the analysis.
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The result is both a description of each group and the statistical test selected for comparison.

In theNote at the top of the report, there is a description informing the principle of selecting a statistical
test suitable for the analysis:
”Quantitative variables:
For the interval scale with normality of distribution, the unpaired Student’s t‐test (t‐st) or its Cochran‐
Cox correction (C‐C) was determined when the variances of the groups differed. For the interval scale,
when the condition of normality of distributionwas notmet, as for the ordinal scale, theMann‐Whitney
(M‐W) test was determined. Normality of the data was tested with the Shapiro‐Wilk and equality of
variance was tested with the Fisher‐Snedecor (F‐S) test. If the scale was not marked for the analyzed
variables, it was assumed that the data came from the interval scale.
Qualitative variables:
For the nominal scale, the chi‐square test (chi2) was determined, andwhen Cochran’s conditionwas not
met the Fisher exact test (Fisher exact) or, for 2x2 tables with a sample size greater than 40, the Yates
correction (chi2‐Yates) was determined For ordinal scale, the chi‐square test for trend was determined.
If the scale was not marked for the variables analyzed, it was assumed that the data came from the
nominal scale.”
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31 THE WIZARD

31 THE WIZARD

The Wizard is a tool which makes the navigation easier to go, through the basic statistics included in an
application, especially for a novice user. It includes suggestions of assumptionswhich should be checked
before the choice of a particular statistic test. The last step of the wizard is to select an appropriate
statistic test and to open the window with the settings of the test options.

The Wizard may be launched by:
‐ Statistics→Wizard,
‐ button on a toolbar.
A launched wizard window includes the possibility to choose the kind of an analysis that a user wants
to carry out. A user may choose:

Comparison − 1 group ‐ to compare values of measurements coming from a 1 population with
the specific value given by the user. This population is represented by raw data gathered in a 1
column or cumulated to the form of a frequency table.

Comparison− 2 groups ‐ to compare values of measurements coming from 2 populations. These
populations are represented by raw data gathered in 2 columns or cumulated to the form of a
contingency table.

Comparison −more than 2 groups ‐ to compare values of measurements coming from several
populations. The populations are represented by data collected in the form of raw data, in several
columns.

Correlation ‐ to check the occurrence of dependence between 2 parameters coming from a 1
population. These features are represented by raw data gathered in 2 columns or cumulated to
the form of a contingency table.

Agreement ‐ to check the concordance of obtained measurements. These features are represen‐
ted by raw data gathered in several columns or cumulated to the form of a contingency table.

When the user chooses the kind of an analysis, a graph will occur. The graph is divided according to
a scale, on which the measurement of the analysed features was done (interval scale, ordinal scale,
nominal scale).
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32 OTHER NOTES

The user moves on the graph by selecting the adequate answers to the asked questions. After the user
gets through the way on the graph, chosen by himself, he is able to perform this test, which− according
to the replies− is an appropriate one to solve the determined statistical problem.

32 OTHER NOTES

32.1 FILES FORMAT

PQS ‐ default file format for PQStat files; is used for representing all objects created with PQStat (pro‐
ject,datasheet,report,graph);

PQX ‐ XML file for PQStat, is used for representing all objects created with PQStat; PQX files are stored
in Unicode text format (support UTF‐8 character encoding); recommended for use on computers with
a small amount of memory.
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